
Audio System Toolbox™

Reference

R2017a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Audio System Toolbox™ Reference Guide
© COPYRIGHT 2016 - 2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2016 Online only New for Version 1.0 (Release 2016a)
September 2016 Online only Revised for Version 1.1 (Release 2016b)
March 2017 Online only Revised for Version 1.2 (Release 2017a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Apps in Audio System Toolbox
1

Functions in Audio System Toolbox
2

System objects in Audio System Toolbox
3

Classes in Audio System Toolbox
4

Blocks in Audio System Toolbox
5

iii

1

Apps in Audio System Toolbox

1 Apps in Audio System Toolbox

Audio Test Bench
Develop, debug, test, and tune audio plugin

Description
The Audio Test Bench provides a graphical interface through which you can
develop, debug, test, and tune your audio plugin in real time. You can interact with
properties of your audio plugin using associated parameter graphical widgets. See
audioPluginParameter for more information.

Using the Audio Test Bench, you can:

• Debug your audio plugin.
• Simulate your audio plugin as generated in a digital audio workstation (DAW).
• Visualize your processing with time-domain and frequency-domain scopes.
• Interactively synchronize MIDI controls to plugin properties.
• Run validation checks and generate VST plugins.

Develop and Test Features

Button Description

Run Run your audio plugin in an audio stream loop using the specified
input and output configuration. You can tune parameters of your
audio processing algorithm in real time. The MATLAB® command
line and objects used by the test bench are locked while the test
bench is running.

Pause
(appears
while test
bench runs)

Pause audio stream loop. The MATLAB command line is released.
Objects used by the test bench remain locked.

Step Forward Call the processing function of your audio plugin one time in an
audio stream loop, with input and output specified by your input and
output configuration.

Stop Stop the audio stream loop. The MATLAB command line and objects
used by the test bench are released.

1-2

 Audio Test Bench

Button Description

Reset Reset internal states of your audio plugin and set parameters to
their initial values.

View Source
Code

Open the source file of your audio plugin.

Time Scope Open an instance of dsp.TimeScope, which provides a time-domain
visualization of the output from your audio stream loop.

Spectrum
Analyzer

Open an instance of dsp.SpectrumAnalyzer, which provides a
frequency-domain visualization of the output from your audio
stream loop.

Synchronize
to MIDI
Controls

Start the configureMIDI user interface (UI) for your plugin object.

Generate
VST 2 Audio
Plugin

Open a UI to validate and generate your plugin object. For Audio
System Toolbox™ System objects, the Audio Test Bench creates
an audioPlugin class using the createAudioPluginClass
method of the object. The created plugin class is used to generate a
plugin object. For more information, see validateAudioPlugin,
generateAudioPlugin, and the createAudioPluginClass
method of your System object™.

Help Open MATLAB documentation for Audio Test Bench.

Configure
Input

Open the input configuration UI. The UI options depend on your
choice of input to the audio stream loop. See the corresponding
documentation for your input choice:

• Audio File Reader — dsp.AudioFileReader
• Audio Device Reader — audioDeviceReader
• Audio Oscillator — audioOscillator
• Wavetable Synthesizer — wavetableSynthesizer
• Chirp Signal — dsp.Chirp
• Colored Noise — dsp.ColoredNoise

1-3

1 Apps in Audio System Toolbox

Button Description

Configure
Output

Open the output configuration UI. The UI options depend on
whether you choose Audio File Writer or Audio Device
Writer for the output from your audio stream loop. If you choose
to output Both, two dialog boxes open: one for the Audio File
Writer and one for the Audio Device Writer. For more
information, see dsp.AudioFileWriter and audioDeviceWriter.

Open the Audio Test Bench App
MATLAB command prompt: Enter audioTestBench.

Examples
• “Audio Test Bench Walkthrough”

Programmatic Use

audioTestBench pluginClass opens the Audio Test Bench for an instance of
pluginClass. The input to audioTestBench must derive from the audioPlugin class,
not the audioPluginSource class.

audioTestBench(pluginClassInstance) opens the Audio Test Bench for
pluginClassInstance, where pluginClassInstance is an instance of an audio
plugin class. The input to audioTestBench must derive from the audioPlugin class,
not the audioPluginSource class.

audioTestBench ASTSystemObject opens the Audio Test Bench for an instance of a
compatible Audio System Toolbox System object.

audioTestBench(ASTSystemObjectInstance) opens the Audio Test Bench for
ASTSystemObjectInstance, where ASTSystemObjectInstance is an instance of a
compatible Audio System Toolbox System object.

audioTestBench(hostedPlugin) opens the Audio Test Bench for hostedPlugin,
where hostedPlugin is an object returned by the loadAudioPlugin function.

audioTestBench(pluginPath) opens the Audio Test Bench for pluginPath, where
pluginPath is the location of an external plugin. Use the full path to specify the audio

1-4

 Audio Test Bench

plugin you want to host. If the plugin is located in the current folder, specify it by its
name.

See Also

See Also

Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Classes
audioPluginSource | audioPlugin

Topics
“Audio Test Bench Walkthrough”
“What Are DAWs, Audio Plugins, and MIDI Controllers?”
“Design an Audio Plugin”
“Audio Plugin Example Gallery”

Introduced in R2016a

1-5

2

Functions in Audio System Toolbox

2 Functions in Audio System Toolbox

audioPluginInterface

Specify audio plugin interface

Syntax

PluginInterface = audioPluginInterface

PluginInterface = audioPluginInterface(pluginParameters)

PluginInterface = audioPluginInterface(Name,Value)

Description

PluginInterface = audioPluginInterface returns an object, PluginInterface,
that specifies the interface of an audio plugin in a digital audio workstation (DAW)
environment. It also specifies interface attributes, such as naming for identification.

PluginInterface = audioPluginInterface(pluginParameters) specifies
audio plugin parameters, which are user-facing variables associated with audio plugin
properties. See audioPluginParameter for more details.

PluginInterface = audioPluginInterface(Name,Value) specifies
audioPluginInterface properties using one or more Name,Value pair arguments.

Examples

Specify Default Audio Plugin Interface

Create a basic audio plugin class definition file.

classdef myAudioPlugin < audioPlugin

 methods

 function out = process(~,in)

 out = in;

 end

 end

end

2-2

 audioPluginInterface

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin

 properties (Constant)

 PluginInterface = audioPluginInterface;

 end

 methods

 function out = process(~,in)

 out = in;

 end

 end

end

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a
processing function that multiplies input by Gain.

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

 end

end

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface;

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

 end

2-3

2 Functions in Audio System Toolbox

end

Pass audioPluginParameter to audioPluginInterface. To associate the
plugin property, Gain, to a plugin parameter, specify the first argument of
audioPluginParameter as the property name, 'Gain'.

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain'));

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

 end

end

If you generate and deploy myAudioPlugin to a digital audio workstation (DAW)
environment, the plugin property, Gain, synchronizes with a user-facing plugin
parameter.

Specify Interface Properties

Create a basic audio plugin class definition file. Specify the plugin name, vendor name,
vendor version, unique identification, number of input channels, and number of output
channels.

classdef monoGain < audioPlugin

 properties

 Gain = 1;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain'),...

 'PluginName','Simple Gain',...

 'VendorName','Cool Company',...

 'VendorVersion','1.0.0',...

 'UniqueId','1a1Z',...

 'InputChannels',1,...

 'OutputChannels',1);

2-4

 audioPluginInterface

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

 end

end

Input Arguments

pluginParameters — Audio plugin parameters
none (default) | one or more audioPluginParameter objects

Audio plugin parameters, specified as one or more audioPluginParameter objects.

To create an audio plugin parameter, use the audioPluginParameter function. In a
digital audio workstation (DAW) environment, they synchronize plugin class properties
with user-facing parameters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'PluginName','cool effect','VendorVersion','1.0.2' specifies
the name of the generated audio plugin as 'cool effect' and the vendor version as
'1.0.2'.

'PluginName' — Name of generated plugin
name of plugin class (default) | string

Name of your generated plugin, as seen by a host audio application, specified as a
comma-separated pair consisting of 'PluginName' and a string of up to 127 characters.
If 'PluginName' is not specified, the generated plugin is given the name of the audio
plugin class it is generated from.

'VendorName' — Vendor name of the plugin creator
' ' (default) | string

2-5

2 Functions in Audio System Toolbox

Vendor name of the plugin creator, specified as the comma-separated pair
'VendorName' and a string of up to 127 characters.

'VendorVersion' — Vendor version
'1.0.0' (default) | dot-separated string

Vendor version used to track plugin releases, specified as a comma-separated pair
consisting of 'VendorVersion' and a dot-separated string of 1–3 integers in the range 0
to 9.
Example: '1'

Example: '1.4'

Example: '1.3.5'

'UniqueId' — Unique identifier of plugin
'MWap' (default) | four-character string

Unique identifier for your plugin, specified as a comma-separated pair consisting of
'UniqueID' and a four-character string, used for recognition in certain digital audio
workstation (DAW) environments.

'InputChannels' — Input channels
2 (default) | integer | vector of integers

Input channels, specified as a comma-separated pair consisting of 'InputChannels'
and an integer or vector of integers. The input channels are the number of input data
arguments and associated channels (columns) passed to the processing function of your
audio plugin.
Example: 'InputChannels',3 calls the processing function with one data argument
containing 3 channels.
Example: 'InputChannels',[2,4,1,5] calls the processing function with 4 data
arguments. The first argument contains 2 channels, the second contains 4 channels, the
third contains 1 channel, and the fourth contains 5 channels.

Note: This property is not applicable for audio source plugins, and must be omitted.

'OutputChannels' — Output channels
2 (default) | integer | vector of integers

2-6

 audioPluginInterface

Output channels, specified a comma-separated pair consisting of 'OutputChannels'
and an integer or vector of integers. The output channels are the number of input data
arguments and associated channels (columns) passed from the processing function of
your audio plugin.
Example: 'OutputChannels',3 specifies the processing function to output one data
argument containing 3 channels.
Example: 'OutputChannels',[2,4,1,5] specifies the processing function to output 4
data arguments. The first argument contains 2 channels, the second contains 4 channels,
the third contains 1 channel, and the fourth contains 5 channels.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

See Also

Classes
audioPlugin | audioPluginSource

Functions
audioPluginParameter | generateAudioPlugin | validateAudioPlugin

Topics
“Design an Audio Plugin”

Introduced in R2016a

2-7

2 Functions in Audio System Toolbox

audioPluginParameter
Specify audio plugin parameters

Syntax

pluginParameter = audioPluginParameter(propertyName)

pluginParameter = audioPluginParameter(propertyName,Name,Value)

Description

pluginParameter = audioPluginParameter(propertyName) returns an
object, pluginParameter, that associates an audio plugin parameter to the audio
plugin property specified by propertyName. Use the plugin parameter object,
pluginParameter, as an argument to an audioPluginInterface function in your
plugin class definition.

In a digital audio workstation (DAW) environment, or when using Audio Test Bench in
the MATLAB environment, plugin parameters are tunable, user-facing variables with
defined ranges mapped to controls. When you modify a parameter value using a control,
the associated plugin property is also modified. If the audio processing algorithm of the
plugin depends on properties, the algorithm is also modified.

To visualize the relationship between plugin properties, parameters, and the
environment in which a plugin is run, see “Implementation of Audio Plugin Parameters”
on page 2-23.

pluginParameter = audioPluginParameter(propertyName,Name,Value)

specifies audioPluginParameter properties using one or more Name,Value pair
arguments.

Examples

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a
processing function that multiplies input by Gain.

2-8

 audioPluginParameter

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

 end

end

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface;

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

 end

end

Pass audioPluginParameter to audioPluginInterface. To associate the
plugin property, Gain, to a plugin parameter, specify the first argument of
audioPluginParameter as the property name, 'Gain'.

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain'));

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

2-9

2 Functions in Audio System Toolbox

 end

end

Specify Parameter Information

Create a basic plugin class definition file. Specify 'DisplayName' as 'Awesome Gain',
'Label' as 'linear', and 'Mapping' as {'lin',0,20}.

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain',...

 'DisplayName', 'Awesome Gain',...

 'Label', 'linear',...

 'Mapping', {'lin',0,20}));

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

 end

end

Integer Parameter Mapping

The following class definition uses integer parameter mapping to define the relationship
between a property and a parameter. You can use the plugin created from this class to
tune the linear gain of an audio signal in integer steps from 0 to 3.

classdef pluginWithIntegerMapping < audioPlugin

 properties

 Gain = 1;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain', ...

 'Mapping', {'int',0,3}));

 end

 methods

 function out = process(plugin,in)

2-10

 audioPluginParameter

 out = in*plugin.Gain;

 end

 end

end

To run the plugin, save the class definition to a local folder and then call the Audio Test
Bench.

audioTestBench(pluginWithIntegerMapping)

2-11

2 Functions in Audio System Toolbox

Power Parameter Mapping

The following class definition uses power parameter mapping to define the relationship
between a property and a parameter. You can use the plugin created from this class to
tune the gain of an audio signal in dB.

classdef pluginWithPowerMapping < audioPlugin

 properties

 Gain = 0;

 end

 properties (Constant)

2-12

 audioPluginParameter

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain', ...

 'Label', 'dB', ...

 'Mapping', {'pow', 1/3, -140, 12}));

 end

 methods

 function out = process(plugin,in)

 dBGain = 10^(plugin.Gain/20);

 out = in*dBGain;

 end

 end

end

To run the plugin, save the class definition to a local folder and then call the Audio Test
Bench.

audioTestBench(pluginWithPowerMapping)

2-13

2 Functions in Audio System Toolbox

Logarithmic Parameter Mapping

The following class definition uses logarithmic parameter mapping to define the
relationship between a property and a parameter. You can use the plugin created from
this class to tune the center frequency of a single-band EQ filter from 100 to 10000.

classdef pluginWithLogMapping < audioPlugin

 properties

 EQ

 CenterFrequency = 1000;

 end

2-14

 audioPluginParameter

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('CenterFrequency', ...

 'Mapping', {'log',100,10000}));

 end

 methods

 function plugin = pluginWithLogMapping

 plugin.EQ = multibandParametricEQ('NumEQBands',1, ...

 'PeakGains',20, ...

 'Frequencies',plugin.CenterFrequency);

 end

 function out = process(plugin,in)

 out = plugin.EQ(in);

 end

 function set.CenterFrequency(plugin,val)

 plugin.CenterFrequency = val;

 plugin.EQ.Frequencies = val;

 end

 function reset(plugin)

 plugin.EQ.SampleRate = getSampleRate(plugin);

 end

 end

end

To run the plugin, save the class definition to a local folder and then call the Audio Test
Bench.

audioTestBench(pluginWithLogMapping)

2-15

2 Functions in Audio System Toolbox

Enumeration for Logical Properties Parameter Mapping

The following class definition uses enumeration parameter mapping to define the
relationship between a property and a parameter. You can use the plugin created
from this class to block or pass through the audio signal by tuning the PassThrough
parameter.

classdef pluginWithLogicalEnumMapping < audioPlugin

 properties

 PassThrough = true;

 end

2-16

 audioPluginParameter

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('PassThrough', ...

 'Mapping', {'enum','Block signal','Pass through'}));

 end

 methods

 function out = process(plugin,in)

 if plugin.PassThrough

 out = in;

 else

 out = zeros(size(in));

 end

 end

 end

end

To run the plugin, save the class definition to a local folder and then call the Audio Test
Bench.

audioTestBench(pluginWithLogicalEnumMapping)

2-17

2 Functions in Audio System Toolbox

'enum' for Enumeration Class Parameter Mapping

The following class definitions comprise a simple example of enumeration parameter
mapping for properties defined by an enumeration class. You can specify the operating
mode of the plugin created from this class by tuning the Mode parameter.

Plugin Class Definition

classdef pluginWithEnumMapping < audioPlugin

 properties

 Mode = OperatingMode.boost;

2-18

 audioPluginParameter

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Mode',...

 'Mapping',{'enum','+6 dB','-6 dB','silence','white noise'}));

 end

 methods

 function out = process(plugin,in)

 switch (plugin.Mode)

 case OperatingMode.boost

 out = in * 2;

 case OperatingMode.cut

 out = in / 2;

 case OperatingMode.mute

 out = zeros(size(in));

 case OperatingMode.noise

 out = rand(size(in)) - 0.5;

 otherwise

 out = in;

 end

 end

 end

end

Enumeration Class Definition

classdef OperatingMode < int8

 enumeration

 boost (0)

 cut (1)

 mute (2)

 noise (3)

 end

end

To run the plugin, save the plugin and enumeration class definition files to a local folder.
Then call the Audio Test Bench on the plugin class.

audioTestBench(pluginWithEnumMapping)

2-19

2 Functions in Audio System Toolbox

Input Arguments

propertyName — Name of audio plugin property
character vector

Name of the audio plugin property that you want to associate with a parameter, specified
as a character vector. Enter the property name exactly as it is defined in the property
section of your audio plugin class.

2-20

 audioPluginParameter

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'DisplayName','Gain','Label','dB' specifies the display name of your
parameter as 'Gain' and the display label for parameter value units as 'dB'.

'DisplayName' — Display name of parameter
associated property name (default) | character vector

Display name of your parameter, specified as a comma-separated pair consisting of
'DisplayName' and a character vector. If 'DisplayName' is not specified, the name of
the associated property is used.

The display name of your parameter is used in a digital audio workstation (DAW)
environment, and when using Audio Test Bench in the MATLAB environment.

'Label' — Display label for parameter value units
' ' (default) | character vector

Display label for parameter value units, specified as a comma-separated pair consisting
of 'Label' and a character vector.

The display label for parameter value units is used in a digital audio workstation (DAW)
environment, and when using Audio Test Bench in the MATLAB environment.

The 'Label' name-value pair is ignored for nonnumeric parameters.

'Mapping' — Mapping between property and parameter range
cell array

Mapping between property and parameter range, specified as the comma-separated pair
consisting of 'Mapping' and a cell array.

Parameter range mapping specifies a mapping between a property and the associated
parameter range.

The first element of the cell array is a character vector specifying the kind of mapping.
The valid values are 'lin', 'log', 'pow', 'int', and 'enum'. The subsequent

2-21

2 Functions in Audio System Toolbox

elements of the cell array depend on the kind of mapping. The valid mappings depend on
the property data type.

Property Data Type Valid Mappings Default

double 'lin', 'log', 'pow',
'int'

{'lin', 0, 1}

logical 'enum' {'enum', 'off', 'on'}
enumeration class 'enum' enumeration names

MappingDescription Example

'lin' Specifies a linear relationship with
given minimum and maximum values.

property value parameter value() = + - ¥ ()min (max min)

{'lin', 0, 24} specifies a linear
relationship with a minimum of 0 and
maximum of 24.

Simple Example: “Specify Parameter
Information” on page 2-10

'log' Specifies a logarithmic relationship
with given minimum and maximum
values, where the control position
maps to the logarithm of the property
value. The minimum value must be
greater than 0.

property value parameter value() = ¥min (max/ min)
()

{'log', 1, 22050} specifies a
logarithmic relationship with a
minimum of 1 and a maximum of
22050.

Simple Example: “Logarithmic
Parameter Mapping” on page 2-14

'pow' Specifies a power law relationship
with given exponent, minimum, and
maximum values. The property value
is related to the control position raised
to the exponent:

property value parameter value() = + - ¥ ()min (max min)
exp

{'pow', 1/3, -140, 12} specifies
a power law relationship with an
exponent of 1/3, a minimum of –140,
and a maximum of 12.

Simple Example: “Power Parameter
Mapping” on page 2-12

'int' Quantizes the control position and
maps it to the range of consecutive
integers with given minimum and
maximum values.

{'int', 0, 3} specifies a linear,
quantized relationship with a minimum
of 0 and maximum of 3. The property

2-22

 audioPluginParameter

MappingDescription Example

property value floor parameter value() = + + - ¥ ()()0 5. min (max min)
value is mapped as an integer in the
range 0 to 3.

Simple Example: “Integer Parameter
Mapping” on page 2-10

'enum'

(logical)

Optionally provides character vectors
for display on the plugin dialog box.

{'enum','Block

signal','Passthrough'} specifies
the character vector 'Block signal'
if the parameter value is false and
'Passthrough' if the parameter value
is true.

Simple Example: “Enumeration for
Logical Properties Parameter Mapping”
on page 2-16

'enum'

(enumeration
class)

Optionally provides character vectors
for the members of the enumeration
class.

{'enum', '+6 dB', '-6 dB',
'silence', 'white noise'} specifies
the character vectors '+6 dB', '-6
dB', 'silence', and 'white noise'.

Simple Example: “'enum' for
Enumeration Class Parameter
Mapping” on page 2-18

For nontrivial examples of audio plugin parameter mapping, see “Audio Plugin Example
Gallery”.

Definitions

Implementation of Audio Plugin Parameters

Audio plugin parameters are visible and tunable in both the MATLAB and digital audio
workstation (DAW) environments.

MATLAB Environment. Use Audio Test Bench to interact with plugin parameters in
the MATLAB environment.

2-23

2 Functions in Audio System Toolbox

DAW Environment. Use generateAudioPlugin to deploy your audio plugin to
a DAW environment. The DAW environment determines the exact layout of plugin
parameters as seen by the plugin user.

2-24

 audioPluginParameter

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

See Also

Classes
audioPluginSource | audioPlugin

Functions
audioPluginInterface | generateAudioPlugin | validateAudioPlugin

Topics
“Design an Audio Plugin”

Introduced in R2016a

2-25

2 Functions in Audio System Toolbox

configureMIDI

Configure MIDI connections between audio plugin and MIDI controller

Syntax

configureMIDI(myAudioPlugin)

configureMIDI(myAudioPlugin,propertyName)

configureMIDI(myAudioPlugin,propertyName,controlNumber)

configureMIDI(myAudioPlugin,propertyName,controlNumber,'DeviceName',

deviceNameValue)

Description

configureMIDI(myAudioPlugin) opens a MIDI configuration user interface (UI).
Use the UI to synchronize parameters of the plugin, myAudioPlugin, to MIDI controls
on your default MIDI device. You can also generate MATLAB code corresponding to the
MIDI configuration developed using the configureMIDI UI.

To set your default device, type this syntax in the command line:

setpref midi DefaultDevice deviceNameValue

deviceNameValue is the MIDI device name, assigned by the device manufacturer or
host operating system.

configureMIDI(myAudioPlugin,propertyName) makes the plugin property,
propertyName, respond to any control on the default MIDI device.

configureMIDI(myAudioPlugin,propertyName,controlNumber) makes the plugin
property respond to the MIDI control specified by controlNumber.

configureMIDI(myAudioPlugin,propertyName,controlNumber,'DeviceName',

deviceNameValue) makes the plugin property respond to the MIDI control specified by
controlNumber on the device specified by deviceNameValue.

2-26

 configureMIDI

Examples

Synchronize Plugin Parameters to MIDI Controls

1 Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

configureMIDI(parametricEQPlugin);

2 In the UI, select a property to synchronize with your default MIDI device.

3 On your MIDI device, operate the control that you want to synchronize to the
selected plugin property. The control appears in the Operate MIDI control to
synchronize box.

2-27

2 Functions in Audio System Toolbox

4 Repeat steps 2 and 3 as needed to synchronize multiple properties to multiple MIDI
controls.

To disconnect the property and control currently displayed on your configureMIDI
UI, click Reset Control at any time.

5 Click OK.

The specified MIDI controls and properties and now synchronized.

Generate MATLAB Code from configureMIDI UI

Generate MATLAB code corresponding to the MIDI configuration developed using the
configureMIDI UI. You can embed the MATLAB code in your simulation so that you do
not need to reopen the UI to restore your chosen MIDI connections.

1 Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

configureMIDI(parametricEQPlugin);

2 In the UI, select a property to synchronize with your default MIDI device.

2-28

 configureMIDI

3 On your MIDI device, operate the control that you want to synchronize to the
selected plugin property. The control appears in the Operate MIDI control to
synchronize box.

4 Select the Generate MATLAB Code check box.

2-29

2 Functions in Audio System Toolbox

5 Click OK. The generated MATLAB code corresponds to the MIDI configuration that
you developed.

2-30

 configureMIDI

Make Plugin Property Respond to Any MIDI Control

Make a plugin property respond to any control on your default MIDI device.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

configureMIDI(parametricEQPlugin,'CenterFrequency1');

Make Plugin Property Respond to Specific MIDI Control on Default MIDI Device

Make a plugin property respond to a specific MIDI control on your default MIDI device.

Create an object of the audio plugin example
audiopluginexample.ParametricEqualizer.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

2-31

2 Functions in Audio System Toolbox

Use midiid to identify a MIDI control to synchronize with your property.

[controlNumber,device] = midiid

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

controlNumber =

 1003

device =

nanoKONTROL2

Use configureMIDI to synchronize your chosen MIDI control, specified by
controlNumber, with a property.

configureMIDI(parametricEQPlugin,'CenterFrequency1',controlNumber);

Make Plugin Property Respond to Specific MIDI Control on a Specific MIDI Device

Make a plugin property respond to any control on your default MIDI device.

Create an object of the audio plugin example,
audiopluginexample.ParametricEqualizer.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

Use midiid to identify a specific MIDI control on a specific MIDI device.

[controlNumber,device] = midiid

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

controlNumber =

 1003

device =

nanoKONTROL2

2-32

 configureMIDI

Use configureMIDI to synchronize a property with your chosen MIDI control, specified
by controlNumber, on your chosen MIDI device, specified by device.

configureMIDI(parametricEQPlugin,'CenterFrequency1',controlNumber,'DeviceName',device)

Input Arguments

myAudioPlugin — Audio plugin
object

Audio plugin, specified as an object that inherits from the audioPlugin class.

propertyName — Name of audio plugin property
character vector

Name of the audio plugin property, specified as a character vector. Enter the property
name exactly as it is defined in the property section of your audio plugin class.

controlNumber — MIDI device control number
integer values

MIDI device control number, specified as an integer. The value is assigned to the control
by the device manufacturer. It is used for identification purposes.

deviceNameValue — MIDI device name
character vector

MIDI device name, assigned by the device manufacturer or host operating system,
specified as a character vector. If you do not specify a MIDI device name, the default
MIDI device is used.

Limitations

For MIDI connections established by configureMIDI, moving a MIDI control sends
a callback to update the associated plugin property values. To synchronize your MIDI
device in an audio stream loop, you might need to use the drawnow command for the
callback to process immediately. For efficiency, use the drawnow limitrate syntax.

For example, to synchronize your MIDI device and audio plugin, uncomment the
drawnow limitrate command from this code :

2-33

2 Functions in Audio System Toolbox

fileReader = dsp.AudioFileReader(...

 'Filename','RockDrums-44p1-stereo-11secs.mp3');

deviceWriter = audioDeviceWriter;

dRC = compressor;

configureMIDI(compressor,'Threshold');

while ~isDone(fileReader)

 input = fileReader();

 output = dRC(input);

 deviceWriter(output);

% drawnow limitrate;

end

release(fileReader);

release(deviceWriter);

If your audio stream loop includes visualizing data on a scope, such as
dsp.SpectrumAnalyzer, dsp.TimeScope, or dsp.ArrayPlot, the drawnow command is not
required.

See Also

See Also

Classes
audioPlugin | audioPluginSource

Functions
disconnectMIDI | getMIDIConnections | midicallback | midicontrols |
midiid | midiread | midisync

Topics
“MIDI Control for Audio Plugins”
“Musical Instrument Digital Interface (MIDI)”

Introduced in R2016a

2-34

 designParamEQ

designParamEQ
Design parametric equalizer

Syntax

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth)

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode)

Description

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth) designs an Nth-order
parametric equalizer with specified gain, center frequency, and bandwidth. B and A are
matrices of numerator and denominator coefficients, with columns corresponding to
cascaded second-order section (SOS) filters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode) specifies whether
the parametric equalizer is implemented with second-order sections or fourth-order
sections (FOS).

Examples

Design Two-Band Parametric Equalizer

Specify the filter order, peak gain in dB, normalized center frequencies, and normalized
bandwidth of the bands of your parametric equalizer.

N = [2,4];

gain = [6,-4];

centerFreq = [0.25,0.75];

bandwidth = [0.12,0.10];

Generate the filter coefficients using the specifed parameters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth);

Create a filter matrix compatible with fvtool.

2-35

2 Functions in Audio System Toolbox

SOS = [B',[ones(sum(N)/2,1),A']];

Visualize your filter design.

fvtool(SOS)

Filter Audio Using SOS Parametric Equalizer

Design a second-order sections (SOS) parametric equalizer using designParamEQ, and
filter an audio stream.

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

2-36

 designParamEQ

frameSize = 256;

fileReader = dsp.AudioFileReader(...

 'RockGuitar-16-44p1-stereo-72secs.wav',...

 'SamplesPerFrame',frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...

 'SampleRate',sampleRate);

setup(fileReader);

setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;

while count < 2500

 audio = fileReader();

 deviceWriter(audio);

 count = count+1;

end

reset(fileReader);

Design a SOS parametric equalizer.

N = [4,4];

gain = [-25,35];

centerFreq = [0.01,0.5];

bandwidth = [0.35,0.5];

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth);

Visualize your filter design.

SOS = [B',[ones(4,1),A']];

fvtool(SOS,...

 'Fs',fileReader.SampleRate,...

 'FrequencyScale','Log');

2-37

2 Functions in Audio System Toolbox

Construct a biquad filter System object.

myFilter = dsp.BiquadFilter(...

 'SOSMatrixSource','Input port',...

 'ScaleValuesInputPort',false);

Construct a spectrum analyzer to visualize the original audio signal and the audio signal
passed through your parametric equalizer.

scope = dsp.SpectrumAnalyzer(...

 'SampleRate',sampleRate,...

 'PlotAsTwoSidedSpectrum',false,...

 'FrequencyScale','Log',...

 'FrequencyResolutionMethod','WindowLength',...

2-38

 designParamEQ

 'WindowLength',frameSize,...

 'Title','Original and Equalized Signals',...

 'ShowLegend',true,...

 'ChannelNames',{'Original Signal','Equalized Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

setup(scope,ones(frameSize,2));

count = 0;

while count < 2500

 originalSignal = fileReader();

 equalizedSignal = myFilter(originalSignal,B,A);

 scope([originalSignal(:,1),equalizedSignal(:,1)]);

 deviceWriter(equalizedSignal);

 count = count+1;

end

release(scope)

release(deviceWriter)

release(fileReader)

2-39

2 Functions in Audio System Toolbox

Filter Audio Using FOS Parametric Equalizer

Design a fourth-order sections (FOS) parametric equalizer using designParamEQ, and
filter an audio stream.

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(...

 'RockGuitar-16-44p1-stereo-72secs.wav',...

 'SamplesPerFrame',frameSize);

2-40

 designParamEQ

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...

 'SampleRate',sampleRate);

setup(fileReader);

setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;

while count < 2500

 x = fileReader();

 deviceWriter(x);

 count = count+1;

end

reset(fileReader);

Design FOS parametric equalizer coefficients.

N = [2,4];

gain = [5,10];

centerFreq = [0.025,0.65];

bandwidth = [0.025,0.35];

mode = 'fos';

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode);

Construct FOS IIR filters.

section1 = dsp.IIRFilter('Numerator',B(:,1)','Denominator',[1,A(:,1)']);

section2 = dsp.IIRFilter('Numerator',B(:,2)','Denominator',[1,A(:,2)']);

Visualize the frequency response of your parameteric equalizer.

[H1,w] = freqz(section1,8192,sampleRate);

H2 = freqz(section2,8192,sampleRate);

H = 20.*log10(abs(H1.*H2));

semilogx(w,H);

title('Magnitude Response (dB)')

xlabel('Frequency (Hz)')

ylabel('Magnitude (dB)')

grid on

2-41

2 Functions in Audio System Toolbox

Construct a spectrum analyzer to visualize the original audio signal and the audio signal
passed through your parametric equalizer.

scope = dsp.SpectrumAnalyzer(...

 'SampleRate',sampleRate,...

 'PlotAsTwoSidedSpectrum',false,...

 'FrequencyScale','Log',...

 'FrequencyResolutionMethod','WindowLength',...

 'WindowLength',frameSize,...

 'Title','Original and Equalized Signals',...

 'ShowLegend',true,...

 'ChannelNames',{'Original Signal','Equalized Signal'});

Play the filtered audio signal, and visualize the original and filtered spectrums.

2-42

 designParamEQ

setup(scope,ones(frameSize,2));

count = 0;

while count < 2500

 x = fileReader();

 y = section1(x);

 z = section2(y);

 scope([x(:,1),z(:,1)]);

 deviceWriter(z);

 count = count + 1;

end

release(fileReader)

release(deviceWriter)

release(scope)

2-43

2 Functions in Audio System Toolbox

Input Arguments

N — Filter order
scalar | row vector

Filter order, specified as a scalar or row vector the same length as centerFreq.
Elements of the vector must be even integers.

gain — Peak gain (dB)
scalar | row vector

Peak gain in dB, specified as a scalar or row vector the same length as centerFreq.
Elements of the vector must be real-valued.

2-44

 designParamEQ

centerFreq — Normalized center frequency of equalizer bands
scalar | row vector

Normalized center frequency of equalizer bands, specified as a scalar or row vector of real
values in the range 0 to 1, where 1 corresponds to the Nyquist frequency (π rad/sample).
If centerFreq is specified as a row vector, separate equalizers are designed for each
element of centerFreq.

bandwidth — Normalized bandwidth
scalar | row vector

Normalized bandwidth, specified as a scalar or row vector the same length as
centerFreq. Elements of the vector are specified as real values in the range 0 to 1,
where 1 corresponds to the Nyquist frequency (π rad/sample).

Normalized bandwidth is measured at gain/2 dB. If gain is set to -Inf (notch filter),
normalized bandwidth is measured at the 3 dB attenuation point: 10 0 510¥ ()log . .

To convert octave bandwidth to normalized bandwidth, calculate the associated Q-factor
as

Q

octave bandwidth

octave bandwidth
=

-

()

()

2

2 1

.

Then convert to bandwidth

bandwidth
centerFreq

Q
= .

mode — Design mode
'sos' (default) | 'fos'

Design mode, specified as 'sos' or 'fos'.

• 'sos' — Implements your equalizer as cascaded second-order filters.
• 'fos' — Implements your equalizer as cascaded fourth-order filters. Because fourth-

order sections do not require the computation of roots, they are generally more
computationally efficient.

2-45

2 Functions in Audio System Toolbox

Output Arguments

B — Numerator filter coefficients
matrix

Numerator filter coefficients, returned as a matrix. Each column of B corresponds to the
numerator coefficients of a different second-order or fourth-order section of your cascaded
equalizer.

A — Denominator filter coefficients
matrix

Denominator filter coefficients, returned as a matrix. Each column of A corresponds to
the denominator coefficients of a different second-order or fourth-order section of your
cascaded equalizer.

A does not include the leading unity coefficient for each section.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

See Also

Functions
designShelvingEQ | designVarSlopeFilter

System Objects
multibandParametricEQ | dsp.BiquadFilter

Topics
“Parametric Equalizer Design”

2-46

 designParamEQ

“Equalization”

Introduced in R2016a

2-47

2 Functions in Audio System Toolbox

designShelvingEQ

Design shelving equalizer

Syntax

[B,A] = designShelvingEQ(gain,slope,Fc)

[B,A] = designShelvingEQ(gain,slope,Fc,type)

Description

[B,A] = designShelvingEQ(gain,slope,Fc) designs a low-shelf equalizer with
the specified gain, slope, and cutoff frequency, Fc. The equalizer is returned as cascaded
second-order section (SOS) IIR filters.

[B,A] = designShelvingEQ(gain,slope,Fc,type) specifies the design type as a
low-shelving or high-shelving equalizer.

Examples

Design Low-Shelf Equalizer

Design three second-order IIR low-shelf equalizers using designShelvingEQ. The three
shelving equalizers use three separate slope specifications.

Specify sampling frequency, peak gain, slope coefficient, and normalized cutoff frequency
for three shelving equalizers. The sampling frequency is in Hz. The peak gain is in dB.

Fs = 44.1e3;

gain = 5;

slope1 = 0.5;

slope2 = 0.75;

slope3 = 1;

2-48

 designShelvingEQ

Fc = 1000/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designShelvingEQ(gain,slope1,Fc);

[B2,A2] = designShelvingEQ(gain,slope2,Fc);

[B3,A3] = designShelvingEQ(gain,slope3,Fc);

Create filter matrices compatible with fvtool.

SOS1 = [B1',[1,A1']];

SOS2 = [B2',[1,A2']];

SOS3 = [B3',[1,A3']];

Visualize your filter design.

fvtool(...

 dsp.BiquadFilter('SOSMatrix',SOS1),...

 dsp.BiquadFilter('SOSMatrix',SOS2),...

 dsp.BiquadFilter('SOSMatrix',SOS3),...

 'Fs',Fs,...

 'FrequencyScale','Log');

legend('slope = 0.1',...

 'slope = 0.5',...

 'slope = 1');

2-49

2 Functions in Audio System Toolbox

Filter Audio Using Low-Shelf Equalizer

Design a low-shelf equalizer, and then use it to filter an audio signal.

Construct audio file reader and audio device writer objects. Use the sample rate of the
reader as the sample rate of the writer. Call setup to reduce the computational load of
initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(...

 'RockGuitar-16-44p1-stereo-72secs.wav',...

 'SamplesPerFrame',frameSize);

2-50

 designShelvingEQ

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...

 'SampleRate',sampleRate);

setup(fileReader);

setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;

while count < 2500

 audio = step(fileReader);

 play(deviceWriter,audio);

 count = count+1;

end

reset(fileReader)

Design a second-order sections (SOS) low-shelf equalizer.

gain = 10;

slope = 3;

Fc = 0.025;

[B,A] = designShelvingEQ(gain,slope,Fc);

Visualize your equalizer design.

SOS = [B',[1,A']];

fvtool(dsp.BiquadFilter('SOSMatrix',SOS),...

 'Fs',fileReader.SampleRate,...

 'FrequencyScale','Log');

2-51

2 Functions in Audio System Toolbox

Construct a biquad filter object.

myFilter = dsp.BiquadFilter(...

 'SOSMatrixSource','Input port',...

 'ScaleValuesInputPort',false);

Construct a spectrum analyzer object to visualize the original audio signal and the audio
signal passed through your low-shelf equalizer.

scope = dsp.SpectrumAnalyzer(...

 'SampleRate',sampleRate,...

 'PlotAsTwoSidedSpectrum',false,...

 'FrequencyScale','Log',...

 'FrequencyResolutionMethod','WindowLength',...

2-52

 designShelvingEQ

 'WindowLength',frameSize,...

 'Title','Original and Equalized Signal',...

 'ShowLegend',true,...

 'ChannelNames',{'Original Signal','Equalized Signal'});

Play the equalized audio signal and visualize the original and equalized spectrums.

setup(scope,ones(frameSize,2));

count = 0;

while count < 2500

 originalSignal = fileReader();

 equalizedSignal = myFilter(originalSignal,B,A);

 scope([originalSignal(:,1),equalizedSignal(:,1)]);

 deviceWriter(equalizedSignal);

 count = count+1;

end

release(fileReader)

release(scope)

release(deviceWriter)

2-53

2 Functions in Audio System Toolbox

Design High-Shelf Equalizer

Design three second-order IIR high shelf equalizers using designShelvingEQ. The
three shelving equalizers use three separate gain specifications.

Specify sampling frequency, peak gain, slope coefficient, and normalized cutoff frequency
for three shelving equalizers. The sampling frequency is in Hz. The peak gain is in dB

Fs = 44.1e3;

gain1 = -6;

gain2 = 6;

gain3 = 12;

2-54

 designShelvingEQ

slope = 0.8;

Fc = 18000/(Fs/2);

Design the filter coefficents using the specified parameters.

[B1,A1] = designShelvingEQ(gain1,slope,Fc,'hi');

[B2,A2] = designShelvingEQ(gain2,slope,Fc,'hi');

[B3,A3] = designShelvingEQ(gain3,slope,Fc,'hi');

Create filter matrices compatible with fvtool.

SOS1 = [B1',[1,A1']];

SOS2 = [B2',[1,A2']];

SOS3 = [B3',[1,A3']];

Visualize your filter design.

fvtool(dsp.BiquadFilter('SOSMatrix',SOS1),...

 dsp.BiquadFilter('SOSMatrix',SOS2),...

 dsp.BiquadFilter('SOSMatrix',SOS3),...

 'Fs',Fs);

legend('gain = -6 dB',...

 'gain = 6 dB',...

 'gain = 12 dB',...

 'Location','NorthWest')

2-55

2 Functions in Audio System Toolbox

Input Arguments

gain — Peak gain (dB)
real scalar in the range –12 to 12

Peak gain in dB, specified as a real scalar in the range –12 to 12.

slope — Slope coefficient
real scalar in the range 0 to 5

Slope coefficient, specified as a real scalar in the range 0 to 5.

2-56

 designShelvingEQ

Fc — Normalized cutoff frequency
real scalar in the range 0 to 1

Normalized cutoff frequency, specified as a real scalar in the range 0 to 1, where 1
corresponds to the Nyquist frequency (π rad/sample).

Normalized cutoff frequency is implemented as half the shelving filter gain, or gain/2
dB.

type — Filter type
'lo' (default) | 'hi'

Filter type, specified as 'lo' or 'hi'.

• 'lo'— Low shelving equalizer
• 'hi'— High shelving equalizer

Output Arguments

B — Numerator filter coefficients
three-element column vector

Numerator filter coefficients of the designed second-order IIR filter, retuned as a three-
element column vector.

A — Denominator filter coefficients
two-element column vector.

Denominator filter coefficients of the designed second-order IIR filter, returned as a two-
element column vector. A does not include the leading unity coefficient.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2-57

2 Functions in Audio System Toolbox

See Also

See Also

Functions
designParamEQ | designVarSlopeFilter

System Objects
multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

2-58

 designVarSlopeFilter

designVarSlopeFilter

Design variable slope lowpass or highpass IIR filter

Syntax

[B,A] = designVarSlopeFilter(slope,Fc)

[B,A] = designVarSlopeFilter(slope,Fc,type)

Description

[B,A] = designVarSlopeFilter(slope,Fc) designs a lowpass filter with the
specified slope and cutoff frequency. B and A are matrices of numerator and denominator
coefficients, with columns corresponding to cascaded second-order sections (SOS).

[B,A] = designVarSlopeFilter(slope,Fc,type) specifies the design type as a
lowpass or highpass filter.

Examples

Design Lowpass IIR Filter

Design two second-order section (SOS) lowpass IIR filters using
designVarSlopeFilter.

Specify the sampling frequency, slope, and normalized cutoff frequency for two lowpass
IIR filters. The sampling frequency is in Hz. The slope is in dB/octave.

Fs = 48e3;

slope = 18;

Fc1 = 10000/(Fs/2);

Fc2 = 16000/(Fs/2);

Design the filter coefficients using the specified parameters.

2-59

2 Functions in Audio System Toolbox

[B1,A1] = designVarSlopeFilter(slope,Fc1);

[B2,A2] = designVarSlopeFilter(slope,Fc2);

Create filter matrices compatible with fvtool.

SOS1 = [B1',[ones(4,1),A1']];

SOS2 = [B2',[ones(4,1),A2']];

Visualize your filter design.

fvtool(SOS1,SOS2,'Fs',Fs);

legend('Fc = 10000 Hz',...

 'Fc = 16000 Hz',...

 'Location','SouthWest');

2-60

 designVarSlopeFilter

Process Audio Using Lowpass Filter

Design a second-order section (SOS) lowpass IIR filter using designVarSlopeFilter.
Use your lowpass filter to process an audio signal.

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(...

 'RockGuitar-16-44p1-stereo-72secs.wav', ...

 'SamplesPerFrame',frameSize);

2-61

2 Functions in Audio System Toolbox

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...

 'SampleRate',sampleRate);

setup(fileReader);

setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;

while count < 2500

 audio = fileReader();

 deviceWriter(audio);

 count = count+1;

end

reset(fileReader);

Design a lowpass filter with a 12 dB/octave slope and a 0.15 normalized frequency cutoff.

[B,A] = designVarSlopeFilter(12,0.15);

Visualize your filter design.

SOS = [B',[ones(4,1),A']];

fvtool(SOS, ...

 'Fs',sampleRate);

2-62

 designVarSlopeFilter

Construct a biquad filter System object.

myFilter = dsp.BiquadFilter(...

 'SOSMatrixSource','Input port', ...

 'ScaleValuesInputPort',false);

Construct a spectrum analyzer System object to visualize the original audio signal and
the audio signal passed through your lowpass filter.

scope = dsp.SpectrumAnalyzer(...

 'SampleRate',sampleRate, ...

 'PlotAsTwoSidedSpectrum',false, ...

 'FrequencyScale','Log', ...

 'FrequencyResolutionMethod','WindowLength', ...

2-63

2 Functions in Audio System Toolbox

 'WindowLength',frameSize, ...

 'Title','Original and Equalized Signal', ...

 'ShowLegend',true, ...

 'ChannelNames',{'Original Signal','Filtered Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

setup(scope,ones(frameSize,2));

count = 0;

while count < 2500

 originalSignal = fileReader();

 filteredSignal = myFilter(originalSignal,B,A);

 scope([originalSignal(:,1),filteredSignal(:,1)]);

 deviceWriter(filteredSignal);

 count = count+1;

end

2-64

 designVarSlopeFilter

Design Highpass IIR Filter

Design two second-order section (SOS) highpass IIR filters using
designVarSlopeFilter.

Specify the sampling frequency in Hz, the slope in dB/octave, and the normalized cutoff
frequency.

Fs = 48e3;

slope1 = 18;

slope2 = 36;

Fc = 4000/(Fs/2);

Design the filter coefficients using the specifed parameters.

2-65

2 Functions in Audio System Toolbox

[B1,A1] = designVarSlopeFilter(slope1,Fc,'hi');

[B2,A2] = designVarSlopeFilter(slope2,Fc,'hi');

Create filter matrices compatible with fvtool.

SOS1 = [B1',[ones(4,1),A1']];

SOS2 = [B2',[ones(4,1),A2']];

Visualize your filter design.

fvtool(SOS1,SOS2,...

 'Fs',Fs,...

 'FrequencyScale','Log');

legend('slope = 18 dB/octave',...

 'slope = 36 dB/octave',...

 'Location','NorthWest')

2-66

 designVarSlopeFilter

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most
pronounced in p, d, and g words. Plosives can be emphasized by the recording process
and are often displeasurable to hear. In this example, you minimize the plosives of a
speech signal by applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader System object™ and audioDeviceWriter System
object™ to read an audio signal from a file and write an audio signal to a device. Listen
to the unprocessed signal. Then release the file reader and device writer.

fileReader = dsp.AudioFileReader(...

 fullfile(matlabroot,'examples','audio','Plosives.wav'));

2-67

2 Functions in Audio System Toolbox

deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)

 audioIn = fileReader();

 deviceWriter(audioIn);

end

release(deviceWriter)

release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter System object to implement the highpass filter design. Create a
crossover filter with one crossover at 250 Hz. The crossover filter enables you to separate
the band of interest for processing. Create a dynamic range compressor to compress the
dynamic range of plosive sounds. To apply no make-up gain, set the MakeUpGainMode to
Property and use the default 0 dB MakeUpGain property value. Create a time scope to
visualize the processed and unprocessed audio signal.

[B,A] = designVarSlopeFilter(48,120/(44100/2),'hi');

biquadFilter = dsp.BiquadFilter(...

 'SOSMatrixSource','Input port', ...

 'ScaleValuesInputPort',false);

crossFilt = crossoverFilter(...

 'NumCrossovers',1, ...

 'CrossoverFrequencies',250, ...

 'CrossoverSlopes',48);

dRCompressor = compressor(...

 'Threshold',-35, ...

 'Ratio',10, ...

 'KneeWidth',20, ...

 'AttackTime',1e-4, ...

 'ReleaseTime',3e-1, ...

 'MakeUpGainMode','Property', ...

 'SampleRate',fileReader.SampleRate);

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate, ...

 'TimeSpan',3, ...

 'BufferLength',fileReader.SampleRate*3*2, ...

 'YLimits',[-1 1], ...

 'ShowGrid',true, ...

 'ShowLegend',true, ...

 'ChannelNames',{'Original','Processed'});

2-68

 designVarSlopeFilter

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)

 audioIn = fileReader();

 audioIn = biquadFilter(audioIn,B,A);

 [band1,band2] = crossFilt(audioIn);

 band1compressed = dRCompressor(band1);

 audioOut = band1compressed + band2;

 deviceWriter(audioOut);

 scope([audioIn audioOut]);

end

release(deviceWriter)

release(fileReader)

release(scope)

release(crossFilt)

release(dRCompressor)

2-69

2 Functions in Audio System Toolbox

Input Arguments

slope — Filter slope (dB/octave)
real scalar in the range [0:6:48]

2-70

 designVarSlopeFilter

Filter slope in dB/octave, specified as a real scalar in the range [0:6:48]. Values that are
not multiples of 6 are rounded.

Fc — Normalized cutoff frequency
real scalar in the range 0 to 1

Normalized cutoff frequency, specified as a real scalar in the range 0 to 1, where 1
corresponds to the Nyquist frequency (π rad/sample).

type — Filter type
'lo' (default) | 'hi'

Filter type, specified as 'lo' or 'hi'.

• 'lo'— Lowpass filter
• 'hi'— Highpass filter

Output Arguments

B — Numerator filter coefficients
3-by-4 matrix

Numerator filter coefficients, returned as a 3-by-4 matrix. Each column of B corresponds
to the numerator coefficients of a different second-order section of your cascaded IIR
filter.

A — Denominator filter coefficients
2-by-4 matrix

Denominator filter coefficients, returned as a 2-by-4 matrix. Each column of A
corresponds to the denominator coefficients of a different second-order section of your
cascaded IIR filter.

A does not include the leading unity coefficient for each section.

2-71

2 Functions in Audio System Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

See Also

Functions
designParamEQ | designShelvingEQ

System Objects
multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

2-72

 disconnectMIDI

disconnectMIDI
Disconnect MIDI controls from audio plugin

Syntax

disconnectMIDI(myAudioPlugin)

Description

disconnectMIDI(myAudioPlugin) disconnects MIDI controls from your audio
plugin object, myAudioPlugin. Only those MIDI connections established using
configureMIDI are disconnected.

Examples

Disconnect MIDI Controls from Audio Plugin

Create an object of the audio plugin example audiopluginexample.Echo.

echoPlugin = audiopluginexample.Echo;

Get the MIDI connections of echoPlugin and verify that it has no MIDI connections.

myMIDIConnections = getMIDIConnections(echoPlugin);

isempty(myMIDIConnections)

ans =

 1

Add MIDI connections using configureMIDI.

configureMIDI(echoPlugin,'Delay1');

Get the MIDI connections of echoPlugin using getMIDIConnections. The MIDI
connections you configured are saved as a structure. View details of the MIDI
connections using dot notation.

2-73

2 Functions in Audio System Toolbox

myMIDIConnections = getMIDIConnections(echoPlugin);

myMIDIConnections.Delay1

ans =

 Law: 'lin'

 Min: 0

 Max: 1

 MIDIControl: 'any control on 'BCF2000''

Use disconnectMIDI to remove MIDI connections between your echoPlugin object
and your MIDI device.

disconnectMIDI(echoPlugin);

Get MIDI connections of echoPlugin and verify that you have successfully disconnected
MIDI controls from your plugin.

myMIDIConnections = getMIDIConnections(echoPlugin);

isempty(myMIDIConnections)

ans =

 1

Input Arguments

myAudioPlugin — Audio plugin
object

Audio plugin, specified as an object that inherits from the audioPlugin class or the
audioPluginSource class.

See Also

See Also

Classes
audioPlugin | audioPluginSource

2-74

 disconnectMIDI

Functions
configureMIDI | getMIDIConnections | midicallback | midicontrols | midiid
| midiread | midisync

Topics
“MIDI Control for Audio Plugins”
“Musical Instrument Digital Interface (MIDI)”

Introduced in R2016a

2-75

2 Functions in Audio System Toolbox

fdesign.parameq
Parametric equalizer filter specification

Syntax

d = fdesign.parameq(spec, specvalue1, specvalue2, ...)

d = fdesign.parameq(... fs)

Description

d = fdesign.parameq(spec, specvalue1, specvalue2, ...) constructs a
parametric equalizer filter design object, where spec is a non-case sensitive character
vector. The choices for spec are as follows:

• 'F0, BW, BWp, Gref, G0, GBW, Gp' (minimum order default)
• 'F0, BW, BWst, Gref, G0, GBW, Gst'

• 'F0, BW, BWp, Gref, G0, GBW, Gp, Gst'

• 'N, F0, BW, Gref, G0, GBW'

• 'N, F0, BW, Gref, G0, GBW, Gp'

• 'N, F0, Fc, Qa, G0'

• 'N, F0, Fc, S, G0'

• 'N, F0 ,BW, Gref, G0, GBW, Gst'

• 'N, F0, BW, Gref, G0, GBW, Gp, Gst'

• 'N, Flow, Fhigh, Gref, G0, GBW'

• 'N, Flow, Fhigh, Gref, G0, GBW, Gp'

• 'N, Flow, Fhigh, Gref, G0, GBW, Gst'

• 'N, Flow, Fhigh, Gref, G0, GBW, Gp, Gst'

where the parameters are defined as follows:

Parameter Definition Unit

BW Bandwidth

2-76

 fdesign.parameq

Parameter Definition Unit

BWp Passband Bandwidth
BWst Stopband Bandwidth
Gref Reference Gain decibels
G0 Center Frequency Gain decibels
GBW Gain at which Bandwidth

(BW) is measured
decibels

Gp Passband Gain decibels
Gst Stopband Gain decibels
N Filter Order
F0 Center Frequency
Fc Cutoff Frequency
Fhigh Higher Frequency at Gain

GBW

Flow Lower Frequency at Gain
GBW

Qa Quality Factor
S Slope Parameter for

Shelving Filters

Regardless of the specification chosen, there are some conditions that apply to the
specification parameters. These are as follows:

• Specifications for parametric equalizers must be given in decibels
• To boost the input signal, set G0 > Gref; to cut, set Gref > G0
• For boost: G0 > Gp > GBW > Gst > Gref; For cut: G0 < Gp < GBW < Gst <

Gref

• Bandwidth must satisfy: BWst > BW > BWp

d = fdesign.parameq(... fs) adds the input sampling frequency. fs must be
specified as a scalar trailing the other numerical values provided, and is assumed to be in
Hz.

2-77

2 Functions in Audio System Toolbox

Examples

Design Parametric Equalizers

Design a Chebyshev Type II parametric equalizer filter that cuts by 12 dB.

parametricEQ = fdesign.parameq('N,Flow,Fhigh,Gref,G0,GBW,Gst', ...

 4,0.3,0.5,0,-12,-10,-1);

parametricEQBiquad = design(parametricEQ,'cheby2','SystemObject',true);

fvtool(parametricEQBiquad)

Design a 4th-order lowpass shelving filter with a normalized cutoff frequency of 0.25, a
quality factor of 10, and an 8 dB boost gain.

2-78

 fdesign.parameq

parametricEQ = fdesign.parameq('N,F0,Fc,Qa,G0',4,0,0.25,10,8);

parametricEQBiquad = design(parametricEQ,'SystemObject',true);

fvtool(parametricEQBiquad)

Design 4th-order highpass shelving filters with slopes of 1.5 and 3.

N = 4; % Filter order

F0 = 1; % Center Frequency

Fc = 0.4; % Cutoff Frequency

G0 = 10; % Center Frequency Gain (dB)

S1 = 1.5; % Slope for filter design 1

S2 = 3; % Slope for filter design 2

2-79

2 Functions in Audio System Toolbox

filter = fdesign.parameq('N,F0,Fc,S,G0',N,F0,Fc,S1,G0);

filterDesignS1 = design(filter,'SystemObject',true);

filter.S = S2;

filterDesignS2 = design(filter,'SystemObject',true);

filterVisualization = fvtool(filterDesignS1,filterDesignS2);

legend(filterVisualization,'Slope = 1.5','Slope = 3');

See Also
fdesign | design | designShelvingEQ | multibandParametricEQ |
designParamEQ | designVarSlopeFilter

2-80

 fdesign.parameq

Topics
“Parametric Equalizer Design”
“Equalization”

2-81

2 Functions in Audio System Toolbox

generateAudioPlugin
Generate audio plugin from MATLAB class

Syntax

generateAudioPlugin className

generateAudioPlugin options className

Description

generateAudioPlugin className generates a VST 2 audio plugin from a MATLAB
class specified by className. See “Supported Compilers” on page 2-84 for a list of
compilers supported by generateAudioPlugin.

generateAudioPlugin options className specifies nondefault output folder,
plugin name, or file type. Options can be specified in any grouping, and in any order.

Examples

Generate Audio Plugin

generateAudioPlugin audiopluginexample.Echo

A VST 2 plugin named Echo is saved to your current folder. The extension of your plugin
depends on your operating system.

Specify Output Folder for Generated Plugin

generateAudioPlugin -outdir myPluginFolder audiopluginexample.Echo

A VST 2 plugin named Echo is saved to your specified folder. The extension of your
plugin depends on your operating system.

Specify File Name of Generated Plugin

generateAudioPlugin -output awesomeEffect audiopluginexample.Echo

2-82

 generateAudioPlugin

A VST 2 plugin named awesomeEffect is saved to your current folder. The extension of
your plugin depends on your operating system.

Specify Output Folder and File Name of Generated Plugin

generateAudioPlugin -output coolEffect -outdir myPluginFolder audiopluginexample.Echo

A VST 2 plugin named coolEffect is saved to your specified folder. The extension of
your plugin depends on your operating system.

Generate win32 Plugin from win64 System

generateAudioPlugin -win32 audiopluginexample.Echo

A 32-bit VST 2 plugin named Echo.dll is saved to your current folder.

Input Arguments

options — Options to specify output folder, plugin name, and file type
-outdir folder | -output pluginName | -win32

Options can be specified in any grouping, and in any order.

Option Description

-outdir folder Generates a plugin to a specific folder. By default, the
generated plugin is placed in the current folder. If
folder is not in the current directory, specify the exact
path.

-output pluginName Specifies the file name of the generated plugin. The
appropriate extension is appended to the pluginName
based on the platform on which the plugin is generated.
By default, the plugin is named after the class.

-win32 Creates a 32-bit audio plugin. Valid only on win64.

className — Name of the plugin class to generate
plugin class

Name of the plugin class to generate. The plugin class must be on the MATLAB path. It
must derive from either the audioPlugin class or the audioPluginSource class.

2-83

2 Functions in Audio System Toolbox

Note: className is not the name of a file. Arguments such as 'myPlugin.m' issue an
error.

Limitations

Build problems can occur when using folder names with spaces. For more information,
see “Enable Build Process for Folder Names with Spaces” (Simulink Coder) and Why
is the build process failing for a shipped model in Simulink or for a model run in
Accelerator mode?.

Definitions

Supported Compilers

Compilers supported by generateAudioPlugin.

Operating System Supported Compilers

win64 Microsoft Visual C++ 2015 Professional

Microsoft Visual C++ 2013 Professional

Microsoft Visual C++ 2012 Professional

Visual Studio Community 2013 is reported to work. Full
support of Visual Studio Community 2013 has not been
qualified by MathWorks®.

Visual Studio Community 2015 is reported to work. Full
support of Visual Studio Community 2015 has not been
qualified by MathWorks.

maci64 Xcode 6.2

Generated Plugin File Extension

The extension of your generated plugin depends on your operating system.

2-84

https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m
https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m
https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m

 generateAudioPlugin

Operating System File Extension

Windows .dll

OSX .vst

See Also

See Also

Apps
Audio Test Bench

Functions
validateAudioPlugin

Classes
audioPlugin | audioPluginSource

Topics
“Design an Audio Plugin”
“Export a MATLAB Plugin to a DAW”

Introduced in R2016a

2-85

2 Functions in Audio System Toolbox

integratedLoudness
Measure integrated loudness and loudness range

Syntax
loudness = integratedLoudness(audioIn,Fs)

loudness = integratedLoudness(audioIn,Fs,channelWeights)

[loudness,loudnessRange] = integratedLoudness(___)

Description
loudness = integratedLoudness(audioIn,Fs) returns the integrated loudness of
an audio signal, audioIn, with sample rate Fs. The ITU-R BS.1770-4 and EBU R 128
standards define the algorithms to calculate integrated loudness.

loudness = integratedLoudness(audioIn,Fs,channelWeights) specifies the
channel weights used to compute the integrated loudness. channelWeights must be a
row vector with the same number of elements as the number of channels in audioIn.

[loudness,loudnessRange] = integratedLoudness(___) returns the loudness
range of the audio signal using either of the previous syntaxes. The EBU R 128 Tech
3342 standard defines the loudness range computation.

Examples
Determine Integrated Loudness

Determine the integrated loudness of an audio signal.

Create a two-second sine wave with a 0 dB amplitude, a 1 kHz frequency, and a 48 kHz
sample rate.

sampleRate = 48e3;

increment = sampleRate*2;

amplitude = 10^(0/20);

frequency = 1e3;

sineGenerator = audioOscillator(...

2-86

 integratedLoudness

 'SampleRate',sampleRate,...

 'SamplesPerFrame',increment,...

 'Amplitude',amplitude,...

 'Frequency', frequency);

signal = sineGenerator();

Calculate the integrated loudness of the audio signal at the specified sample rate.

loudness = integratedLoudness(signal,sampleRate)

loudness =

 -3.0036

Specify Nondefault Channel Weights

Read in a four-channel audio signal. Specify a nondefault weighting vector with four
elements.

[signal,fs] = audioread('AudioArray-16-16-4channels-20secs.wav');

weightingVector = [1,0.8,0.8,1.2];

Calculate the integrated loudness with the default channel weighting and the nondefault
channel weighting vector.

standardLoudness = integratedLoudness(signal,fs,weightingVector)

nonStandardLoudness = integratedLoudness(signal,fs)

standardLoudness =

 -11.6825

nonStandardLoudness =

 -11.0121

Determine Loudness Range

Read in an audio signal. Clip 3 five-second intervals out of the signal.

[x,fs] = audioread('FunkyDrums-44p1-stereo-25secs.mp3');

2-87

2 Functions in Audio System Toolbox

x1 = x(1:fs*5,:);

x2 = x(5e5:5e5+5*fs,:);

x3 = x(end-5*fs:end,:);

Calculate the loudness and loudness range of the total signal and of each interval.

[L,LRA] = integratedLoudness(x,fs);

[L1,LRA1] = integratedLoudness(x1,fs);

[L2,LRA2] = integratedLoudness(x2,fs);

[L3,LRA3] = integratedLoudness(x3,fs);

fprintf(['Loudness: %0.2f\n',...

 'Loudness range: %0.2f\n\n',...

 'Beginning loudness: %0.2f\n',...

 'Beginning loudness range: %0.2f\n\n',...

 'Middle loudness: %0.2f\n',...

 'Middle loudness range: %0.2f\n\n',...

 'End loudness: %0.2f\n',...

 'End loudness range: %0.2f\n'],...

 L,LRA,L1,LRA1,L2,LRA2,L3,LRA3);

Loudness: -22.93

Loudness range: 1.50

Beginning loudness: -23.29

Beginning loudness range: 1.17

Middle loudness: -22.99

Middle loudness range: 1.12

End loudness: -22.10

End loudness range: 1.82

Input Arguments

audioIn — Input signal
matrix

Input signal, specified as a matrix. The columns of the matrix are treated as audio
channels.

The maximum number of columns of the input signal depends on your channelWeights
specification:

2-88

 integratedLoudness

• If you use the default channelWeights, the input signal has a maximum of five
channels. Specify the channels in this order: [Left, Right, Center, Left surround, Right
surround].

• If you specify nondefault channelWeights, the input signal must have the same
number of columns as the number of elements in the channelWeights vector.

Data Types: single | double

Fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

channelWeights — Linear weighting applied to each input channel
[1.0, 1,0, 1.0, 1.41, 1.41] (default) | nonnegative row vector

Linear weighting applied to each input channel, specified as a row vector of nonnegative
values. The number of elements in the row vector must be equal to or greater than the
number of input channels. Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default
channel weights, specify the channels of the audioIn matrix in this order: [Left, Right,
Center, Left surround, Right surround].

It is a best practice to specify the channelWeights vector in order: [Left, Right, Center,
Left surround, Right surround].
Data Types: single | double

Output Arguments

loudness — Integrated loudness (LUFS)
scalar

Integrated loudness in loudness units relative to full scale (LUFS), returned as a scalar.

The ITU-R BS.1770-4 and EBU R 128 standards define the integrated loudness. The
algorithm computes the loudness by breaking down the audio signal into 0.4-second

2-89

2 Functions in Audio System Toolbox

segments with 75% overlap. If the input signal is less than 0.4 seconds, loudness is
returned empty.
Data Types: single | double

loudnessRange — Loudness range (LU)
scalar

Loudness range in loudness units (LU), returned as a scalar.

The EBU R 128 Tech 3342 standard defines the loudness range. The algorithm computes
the loudness range by breaking down the audio into 3-second segments with 2.9-second
overlap. If the input signal is less than three seconds, loudnessRange is returned
empty.
Data Types: single | double

Algorithm

The integratedLoudness function returns the integrated loudness and loudness
range (LRA) of an audio signal. You can specify any number of channels and nondefault
channel weights used for loudness measurements. The integratedLoudness algorithm
is described for the general case of n channels.

2-90

 integratedLoudness

Integrated Loudness and Loudness Range

The input channels, x, pass through a K-weighted weightingFilter. The K-weighted filter
shapes the frequency spectrum to reflect perceived loudness.

Integrated Loudness

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second
overlap. The power (mean square) of each segment of the K-weighted channels is
calculated:

mP
w

y ki i
k

w

=

=

Â
1 2

1

[]

• mPi is the momentary power of the ith segment of a channel.
• w is the segment length in samples.

2 The momentary loudness, mL, is computed for each segment:

mL G mP LUFSi c i c

c

n

= - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃()

=
Â0 691 10 10

1

. log ,

• Gc is the weighting for channel c.

3 The momentary power is gated using the momentary loudness calculation:

mP mPi jÆ

j i mLi= ≥ -{ }70

4 The relative threshold, Γ, is computed:

G = - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃ -

=
Â0 691 10 1010

1

. log G lc c

c

n

lc is the mean momentary power of channel c:

2-91

2 Functions in Audio System Toolbox

l
j

mPc j c
j

= ()Â
1

,

5 The momentary power subset, mPj, is gated using the relative threshold:

mP mPj kÆ

k j mPj= ≥{ }G

6 The momentary power segments are averaged:

P
k

mPk

k

= Â
1

7 The integrated loudness is computed by passing the mean momentary power subset,
P, through the Compute Loudness system:

Integrated Loudness = - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
Â0 691 10 10

1

. log G P LUFSc c

c

n

Loudness Range

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second
overlap. The power (mean square) of each segment of the K-weighted channels is
calculated:

sP
w

y ki i
k

w

=

=

Â
1 2

1

[]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

2 The short-term loudness, sL, is computed for each segment:
2-92

 integratedLoudness

sL G sPi c i c

c

n

= - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃()

=
Â0 691 10 10

1

. log ,

• Gc is the weighting for channel c.

3 The short-term loudness is gated using an absolute threshold:

sL sLi jÆ

j i sLi= ≥ -{ }70

4 The gated short-term loudness is converted back to linear, and then the mean is
taken:

sP
j

j

sL

j

j

=
Ê
Ë
Á

ˆ
¯
˜

Â1
10

10

The relative threshold, K, is computed:

K sPj= - + ()20 10 10log

5 The short-term loudness subset, sLj, is gated using the relative threshold:

sL sLj kÆ

k j sL Kj= ≥{ }

6 The short-term loudness subset, sLk, is sorted. The loudness range is calculated
as between the 10th and 95th percentiles of the distribution, and is returned in
loudness units (LU).

2-93

2 Functions in Audio System Toolbox

References

[1] International Telecommunication Union; Radiocommunication Sector. Algorithms
to Measure Audio Programme Loudness and True-Peak Audio Level. ITU-R
BS.1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum
Level of Audio Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to
Supplement EBU R 128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

[4] European Broadcasting Union. Loudness Range: A Measure to Supplement EBU R
128 Loudness Normalization. EBU R 128 Tech 3342. 2016.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

See Also

System Objects
loudnessMeter | weightingFilter

Blocks
Loudness Meter

Introduced in R2016b

2-94

 getMIDIConnections

getMIDIConnections

Get MIDI connections of audio plugin

Syntax

connectionInfo = getMIDIConnections(myAudioPlugin)

Description

connectionInfo = getMIDIConnections(myAudioPlugin) returns a structure,
connectionInfo, containing information about the MIDI connections for your
audio plugin, myAudioPlugin. Only those MIDI connections established using
configureMIDI are returned.

The connectionInfo structure contains a substructure for each tunable property of
myAudioPlugin that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Examples

Get MIDI Connections of Plugin

Create an object of the audio plugin example audiopluginexample.Echo.

echoEffect = audiopluginexample.Echo;

Use configureMIDI to synchronize echoEffect properties with specific MIDI controls
on the default MIDI device.

configureMIDI(echoEffect,'Delay1',1001);

configureMIDI(echoEffect,'Gain1' ,1002);

configureMIDI(echoEffect,'Delay2',1003);

configureMIDI(echoEffect,'Gain2' ,1004);

2-95

2 Functions in Audio System Toolbox

Use getMIDIConnections to view the MIDI connections you established.

connectionInfo = getMIDIConnections(echoEffect)

connectionInfo =

 Delay1: [1x1 struct]

 Gain1: [1x1 struct]

 Delay2: [1x1 struct]

 Gain2: [1x1 struct]

View details of the Delay1 MIDI connection using dot notation.

connectionInfo.Delay1

ans =

 Law: 'lin'

 Min: 0

 Max: 1

 MIDIControl: 'control 1001 on 'nanoKONTROL2''

Input Arguments

myAudioPlugin — Audio plugin
object

Audio plugin, specified as an object that inherits from the audioPlugin class.

Output Arguments

connectionInfo — Information about MIDI connection
structure

Information about MIDI connection between the specified audio plugin object and
MIDI devices, returned as a structure. Only those MIDI connections established
using configureMIDI are returned. The connectionInfo structure contains a
substructure for each established MIDI connection. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

2-96

 getMIDIConnections

See Also

See Also

Classes
audioPlugin | audioPluginSource

Functions
configureMIDI | disconnectMIDI | midicallback | midicontrols | midiid |
midiread | midisync

Topics
“MIDI Control for Audio Plugins”
“Musical Instrument Digital Interface (MIDI)”

Introduced in R2016a

2-97

2 Functions in Audio System Toolbox

loadAudioPlugin
Load VST and VST3 plugins into MATLAB environment

Syntax

hostedPlugin = loadAudioPlugin(pluginpath)

Description

hostedPlugin = loadAudioPlugin(pluginpath) loads the 64-bit VST or VST3
audio plugin specified by pluginpath.

You can interact with and exercise the hosted plugin using the following functions.

• audioOut = process(hostedPlugin,audioIn)

Returns an audio signal processed according to the algorithm and parameters of the
hosted plugin. For source plugins, call process without an audio input.

• value = getParameter(hostedPlugin,parameter)

Returns the normalized value of the specified hosted plugin parameter. Normalized
values are in the range [0,1]. You can specify a parameter by its name or by its index.
To specify the name, use a character vector.

• setParameter(hostedPlugin,parameter,newValue)

Sets the normalized value of the specified hosted plugin parameter to newValue.
Normalized values are in the range [0,1].

• dispParameter(hostedPlugin)

Displays all parameters and associated indices, values, displayed values, and display
labels of the hosted plugin.

• pluginInfo = info(hostedPlugin)

Returns a structure containing information about the hosted plugin.
• sampleRate = getSampleRate(hostedPlugin)

2-98

 loadAudioPlugin

Returns the sample rate in Hz at which the plugin is being run.
• setSampleRate(hostedPlugin,sampleRate)

Sets the sample rate of the hosted plugin to the value specified by sampleRate.
• frameSize = getSamplesPerFrame(hostedPlugin)

Returns the frame size that the hosted plugin returns in subsequent calls to its
processing function (source plugins only).

• setSamplesPerFrame(hostedPlugin,frameSize)

Sets the frame size that the hosted plugin must return in subsequent calls to its
processing function (source plugins only).

Examples

Host External Plugin in MATLAB

Use loadAudioPlugin to host a VST external plugin and a VST external source plugin.

Use the fullfile command to determine the full path to the oscillator VST plugin and
parametric equalizer VST plugin included with Audio System Toolbox. If you are using a
Mac, replace the .dll file extension with .vst.

oscPluginPath = ...

 fullfile(matlabroot,'toolbox/audio/samples/oscillator.dll');

EQPluginPath = ...

 fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');

Create external plugin objects by calling loadAudioPlugin for each of the plugin paths.

hostedSourcePlugin = loadAudioPlugin(oscPluginPath);

hostedPlugin = loadAudioPlugin(EQPluginPath);

Hosted plugins derive from either externalAudioPlugin or
externalAudioSourcePlugin. Because oscillator.dll is a source audio plugin, the
hosted object derives from externalAudioSourcePlugin. Use class() to verify the
class of the hosted plugins.

class(hostedPlugin)

2-99

2 Functions in Audio System Toolbox

ans =

externalAudioPlugin

class(hostedSourcePlugin)

ans =

externalAudioPluginSource

Call the hosted plugins to display basic information about them. This information
includes the format, the plugin name, the number of channels in and out, and the
tunable parameters of the plugin, which are summarized in a table. Source plugins also
display the frame size of the plugin.

hostedSourcePlugin

hostedPlugin

hostedSourcePlugin =

 VST plugin 'oscillator' source, 1 out, 256 samples

 Parameter Value Display

 1 Frequency: 0.5659 100.000 Hz

 2 Amplitude: 0.1000 1.000 AU

 3 DC Offset: 0.5000 0.000 AU

hostedPlugin =

 VST plugin 'ParametricEQ' 2 in, 2 out

 Parameter Value Display

 1 Low Peak Gain: 0.5000 0.000 dB

 2 Low Center Frequency: 0.2330 100.000 Hz

 3 Low Q Factor: 0.2822 2.000

 4 Medium Peak Gain: 0.5000 0.000 dB

 5 Medium Center Frequency: 0.5663 1000.000 Hz

2-100

 loadAudioPlugin

 4 parameters not displayed. Use dispParameter(hostedPlugin) to see all 9 params.

Specify Hosted Plugin Parameter Values

Load a VST audio plugin into MATLAB® by specifying its full path. If you are using a
Mac, replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');

hostedPlugin = loadAudioPlugin(pluginPath)

hostedPlugin =

 VST plugin 'ParametricEQ' 2 in, 2 out

 Parameter Value Display

 1 Low Peak Gain: 0.5000 0.000 dB

 2 Low Center Frequency: 0.2330 100.000 Hz

 3 Low Q Factor: 0.2822 2.000

 4 Medium Peak Gain: 0.5000 0.000 dB

 5 Medium Center Frequency: 0.5663 1000.000 Hz

 4 parameters not displayed. Use dispParameter(hostedPlugin) to see all 9 params.

Use info to return information about the hosted plugin.

info(hostedPlugin)

ans =

 struct with fields:

 PluginName: 'ParametricEQ'

 Format: 'VST'

 InputChannels: 2

 OutputChannels: 2

 NumParams: 9

 PluginPath: 'E:\jobarchive\Bdoc16b\2016_07_05_h07m05s16_job410158_...'

 VendorName: ''

 VendorVersion: 'V1.0.0'

 UniqueId: 'MWap'

Use setParameter to change the normalized value of the Medium Center Frequency
parameter to 0.75. Specify the parameter by its index.

2-101

2 Functions in Audio System Toolbox

setParameter(hostedPlugin,5,0.75)

When you set the normalized parameter value, the parameter display value is
automatically updated. The normalized parameter value generally corresponds to the
position of a UI widget or MIDI controller. The parameter display value typically reflects
the value used internally for processing.

Use dispParameter to display the updated table of parameters.

dispParameter(hostedPlugin)

 Parameter Value Display

 1 Low Peak Gain: 0.5000 0.000 dB

 2 Low Center Frequency: 0.2330 100.000 Hz

 3 Low Q Factor: 0.2822 2.000

 4 Medium Peak Gain: 0.5000 0.000 dB

 5 Medium Center Frequency: 0.7500 3556.559 Hz

 6 Medium Q Factor: 0.2822 2.000

 7 High Peak Gain: 0.5000 0.000 dB

 8 High Center Frequency: 0.8997 10000.000 Hz

 9 High Q Factor: 0.2822 2.000

Alternatively, you can use getParameter to return the normalized value of a single
parameter.

parameterIndex = 5;

parameterValue = getParameter(hostedPlugin,parameterIndex)

parameterValue =

 0.7500

Run External Plugin in MATLAB

Load a VST audio plugin into MATLAB™ by specifying its full path. If you are using a
Mac, replace the .dll file extension with .vst.

pluginPath = ...

 fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');

2-102

 loadAudioPlugin

hostedPlugin = loadAudioPlugin(pluginPath);

Create input and output objects for an audio stream loop that reads from a file and
writes to your audio device. Set the sample rate of the hosted plugin to the sample rate of
the input to the plugin.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

setSampleRate(hostedPlugin,fileReader.SampleRate);

Set the normalized value of the Medium Peak Gain parameter value to zero.

parameterValue = 0;

setParameter(hostedPlugin,'Medium Peak Gain',parameterValue)

Use the hosted plugin to process the audio file in an audio stream loop. Sweep the
medium peak gain upward in the loop to hear the effect.

while parameterValue < 0.995

 parameterValue = parameterValue + 0.001;

 setParameter(hostedPlugin,'Medium Peak Gain',parameterValue);

 x = fileReader();

 y = process(hostedPlugin,x);

 deviceWriter(y);

end

release(fileReader)

release(deviceWriter)

Specify Hosted Source Plugin Parameter Values

Load a VST audio source plugin into MATLAB® by specifying its full path. If you are
using a Mac, replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/oscillator.dll');

hostedSourcePlugin = loadAudioPlugin(pluginPath)

hostedSourcePlugin =

 VST plugin 'oscillator' source, 1 out, 256 samples

 Parameter Value Display

2-103

2 Functions in Audio System Toolbox

 1 Frequency: 0.5659 100.000 Hz

 2 Amplitude: 0.1000 1.000 AU

 3 DC Offset: 0.5000 0.000 AU

Use info to return information about the hosted plugin.

info(hostedSourcePlugin)

ans =

 struct with fields:

 PluginName: 'oscillator'

 Format: 'VST'

 InputChannels: 0

 OutputChannels: 1

 NumParams: 3

 PluginPath: 'E:\jobarchive\Bdoc16b\2016_07_05_h07m05s16_job410158_...'

 VendorName: ''

 VendorVersion: 'V1.0.0'

 UniqueId: 'MWap'

Use setParameter to change the normalized value of the Frequency parameter to 0.8.
Specify the parameter by its index.

setParameter(hostedSourcePlugin,1,0.8)

When you set the normalized parameter value, the parameter display value is
automatically updated. Generally, the normalized parameter value corresponds to the
position of a UI widget or MIDI controller. The parameter display value typically reflects
the value used internally by the plugin for processing.

Use dispParameter to display the updated table of parameters.

dispParameter(hostedSourcePlugin)

 Parameter Value Display

 1 Frequency: 0.8000 1741.101 Hz

 2 Amplitude: 0.1000 1.000 AU

 3 DC Offset: 0.5000 0.000 AU

2-104

 loadAudioPlugin

Alternatively, you can use getParameter to return the normalized value of a single
parameter.

getParameter(hostedSourcePlugin,1)

ans =

 0.8000

Run External Source Plugin in MATLAB

Load a VST audio source plugin into MATLAB™ by specifying its full path. If you are
using a Mac, replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','oscillator.dll');

hostedSourcePlugin = loadAudioPlugin(pluginPath);

Set the normalized value of the Amplitude parameter to 0.05. Set the normalized value
of the Frequency parameter to 0.8.

setParameter(hostedSourcePlugin,'Amplitude',0.05);

frequencyParameterValue = 0.8;

setParameter(hostedSourcePlugin,'Frequency',frequencyParameterValue);

Set the sample rate at which to run the plugin. Create an output object to write to your
audio device.

setSampleRate(hostedSourcePlugin,44100);

deviceWriter = audioDeviceWriter('SampleRate',44100);

Use the hosted source plugin to output an audio stream. The processing in the audio
stream loop ramps the frequency parameter down and then up.

k = 1;

for i = 1:1000

 frequencyParameterValue = frequencyParameterValue - 0.0004*k;

 setParameter(hostedSourcePlugin,'Frequency',frequencyParameterValue);

 y = process(hostedSourcePlugin);

 deviceWriter(y);

 if i == 500

 k = -1;

 end

end

2-105

2 Functions in Audio System Toolbox

release(deviceWriter)

Input Arguments

pluginpath — Location of external plugin
character vector

Location of the external plugin, specified as a character vector. Use the full path to
specify the audio plugin you want to host in MATLAB. If the plugin is located in the
current folder, specify it by its name.
Example: loadAudioPlugin('coolPlugin.dll')

Example: loadAudioPlugin('C:\Program Files\VSTPlugins\coolPlugin.dll')

Plugin Path for Macs

For Macs, the plugin locations are predetermined depending on if the plugin was saved
system wide or for a particular user.

This table shows the system-wide paths.

Plugin Type Path

VST2 /Library/Audio/Plug-Ins/VST/coolPlugin.vst

VST3 /Library/Audio/Plug-Ins/VST3/coolPlugin.vst3

This table shows the user-specific paths.

Plugin Type Path

VST2 ~/Library/Audio/Plug-Ins/VST/coolPlugin.vst

VST3 ~/Library/Audio/Plug-Ins/VST3/coolPlugin.vst3

Output Arguments

hostedPlugin — Object of external plugin
externalAudioPlugin | externalAudioSourcePlugin

2-106

 loadAudioPlugin

Object of an external plugin, derived from externalAudioPlugin or
externalAudioSourcePlugin. You can interact with the hosted plugin as a DAW
would, with the additional functionality of the MATLAB environment.

Limitations

The loadAudioPlugin function supports 64-bit plugins only. You cannot load 32-bit
plugins using the loadAudioPlugin function.

See Also

See Also

Classes
audioPlugin | audioPluginSource | externalAudioPlugin | externalAudioPluginSource

Topics
“Host External Audio Plugins”

Introduced in R2016b

2-107

2 Functions in Audio System Toolbox

midicallback
Call function handle when MIDI controls change value

Syntax

oldFunctionHandle = midicallback(midicontrolsObject,functionHandle)

oldFunctionHandle = midicallback(midicontrolsObject,[])

currentFunctionHandle = midicallback(midicontrolsObject)

Description

oldFunctionHandle = midicallback(midicontrolsObject,functionHandle)

sets functionHandle as the function handle called when midicontrolsObject
changes value, and returns the previous function handle, oldFunctionHandle.

oldFunctionHandle = midicallback(midicontrolsObject,[]) clears the
function handle.

currentFunctionHandle = midicallback(midicontrolsObject) returns the
current function handle.

Examples

Interactively Read MIDI Controls

Create a default MIDI controls object. Use midicallback to associate an anonymous
function with your MIDI controls object, mc.

mc = midicontrols;

midicallback(mc,@(x)disp(midiread(x)));

Move any control on your default MIDI device to display its current normalized value on
the command line.

 0.5079

2-108

 midicallback

 0.5000

 0.4921

 0.4841

 0.4762

 0.4683

 0.4603

 0.4683

Use midicallback to Update Plot

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.

Waiting for control message...

Create an object that responds to the control you specified.

midicontrolsObject = midicontrols(controlNumber);

Define a function that plots a sinusoid with the amplitude set by your MIDI control.
Make the axis constant.

axis([0,2*pi,-1,1]);

axis manual

hold on

sinePlotter = @(obj) plot(0:0.1:2*pi,midiread(obj).*sin(0:0.1:2*pi));

2-109

2 Functions in Audio System Toolbox

Use the midicallback function to associate your sinePlotter function with the
control specified by your midicontrolsObject. Move your specified MIDI control. The
plot updates automatically with the sinusoid amplitude specified by your MIDI control.

midicallback(midicontrolsObject,sinePlotter)

2-110

 midicallback

Change Function Handle Associated with MIDI Control

Create an object that responds to any control on the default MIDI device.

midicontrolsObject = midicontrols;

Define an anonymous function to display the current value of the MIDI control. Use
midicallback to associate your MIDI control object with the function you created.
Verify that your object is associated with your function.

displayControlValue = @(object) disp(midiread(object));

midicallback(midicontrolsObject,displayControlValue);

currentFunctionHandle = midicallback(midicontrolsObject)

currentFunctionHandle =

2-111

2 Functions in Audio System Toolbox

 @(object)disp(midiread(object))

Move any control on your default MIDI device to display its current normalized value on
the command line.

 0.3095

 0.4603

 0.6746

 0.7381

 0.8175

 0.8571

 0.9048

Define an anonymous function to print the current value of the MIDI control rounded to
two significant digits. Use midicallback to associate your MIDI controls object with the
function you created. Return the old function handle.

displayRoundedControlValue = @(object) fprintf('%.2f\n',midiread(object));

oldFunctionHandle = midicallback(midicontrolsObject,displayRoundedControlValue)

oldFunctionHandle =

 @(object)disp(midiread(object))

Move a control to display its current normalized value rounded to two significant digits.

0.91

0.83

0.67

0.49

0.29

0.18

0.05

Remove the association between the object and the function. Return the old function
handle.

oldFunctionHandle = midicallback(midicontrolsObject,[])

2-112

 midicallback

oldFunctionHandle =

 @(object)fprintf('%.2f\n',midiread(object))

Verify that no function is associated with your MIDI controls object.

currentFunctionHandle = midicallback(midicontrolsObject)

currentFunctionHandle =

 []

Associate a Function with MIDI Controls

Define this function and save it to your current folder.

function plotSine(midicontrolsObject)

frequency = midiread(midicontrolsObject);

x = 0:0.01:10;

sinusoid = sin(2*pi*frequency.*x);

plot(x,sinusoid)

axis([0,10,-1.1,1.1]);

ylabel('Amplitude');

xlabel('Time (s)');

title('Sine Plot')

legend(sprintf('Frequency = %0.2f Hz',frequency));

end

Create a midicontrols object. Create a function handle for your plotSine function.
Use midicallback to associate your midicontrolsObject with plotSineHandle.

Move any controller on your MIDI device to plot a sinusoid. The sinusoid frequency
updates when you move MIDI controls.

midicontrolsObject = midicontrols;

plotSineHandle = @plotSine;

midicallback(midicontrolsObject,plotSineHandle);

2-113

2 Functions in Audio System Toolbox

Input Arguments

midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

functionHandle — New function handle
function handle

New function handle, specified as a function handle that contains one input argument.
The new function handle is called when midicontrolsObject changes value. For
information on what function handles are, see “Function Handles” (MATLAB).

2-114

 midicallback

Output Arguments

oldFunctionHandle — Old function handle
function handle

Old function handle set by the previous call to midicallback, returned as a function
handle.

currentFunctionHandle — Current function handle
function handle

The function handle set by the most recent call to midicallback, returned as a function
handle.

See Also

See Also

Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicontrols |
midiid | midiread | midisync | setpref

Topics
“Musical Instrument Digital Interface (MIDI)”
“MIDI Control for Audio Plugins”

2-115

2 Functions in Audio System Toolbox

midicontrols

Open group of MIDI controls for reading

Syntax

midicontrolsObject = midicontrols

midicontrolsObject = midicontrols(controlNumbers)

midicontrolsObject = midicontrols(controlNumbers,initialValues)

midicontrolsObject = midicontrols(___ ,'MIDIDevice',deviceName)

midicontrolsObject = midicontrols(___ ,'OutputMode',mode)

Description

midicontrolsObject = midicontrols returns an object that listens to all controls
on your default MIDI device.

Call midiread with the object to return the values of controls on your MIDI device. If
you call midiread before a control is moved, midiread returns the initial value of your
midicontrols object.

midicontrolsObject = midicontrols(controlNumbers) listens to controls
specified by controlNumbers on your default MIDI device.

midicontrolsObject = midicontrols(controlNumbers,initialValues)

specifies initialValues associated with controlNumbers.

midicontrolsObject = midicontrols(___ ,'MIDIDevice',deviceName)

specifies the MIDI device your midicontrols object listens to, using any of the previous
syntaxes.

midicontrolsObject = midicontrols(___ ,'OutputMode',mode) specifies
the range of values returned by midiread and accepted as initialValues for
midicontrols and as controlValues for midisync.

2-116

 midicontrols

Examples

Listen to Any Control on Default Device

Create a midicontrols object and read the default control value.

midicontrolsObject = midicontrols

midiread(midicontrolsObject)

midicontrolsObject =

midicontrols object: any control on 'BCF2000'

ans =

 0

Move any control on your MIDI device. Use midiread to return the most recent value of
the last control moved.

midiread(midicontrolsObject)

ans =

 0.3810

Listen to Specific Control

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.

Waiting for control message...

Create an object that responds to the control you specified.

midicontrolsObject = midicontrols(controlNumber);

Move your selected MIDI control, and then use midiread to return its most recent value.

midicontrolsObject = midiread(midicontrolsObject);

2-117

2 Functions in Audio System Toolbox

ans =

 0.4048

Specify Control Numbers and Initial Value

Determine the control numbers of four different controls on your MIDI device.

[controlNumber1,~] = midiid;

[controlNumber2,~] = midiid;

[controlNumber3,~] = midiid;

[controlNumber4,~] = midiid;

controlNumbers = [controlNumber1,controlNumber3;...

 controlNumber2,controlNumber4]

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

controlNumbers =

 1081 1085

 1082 1087

Create a midicontrols object that listens to your specified controls. Specify an initial
value for all controls.

initialValue = 0.5;

midicontrolsObject = midicontrols(controlNumbers,initialValue);

Move one of your specified controls, and then read the latest value of all your specified
controls.

midiread(midicontrolsObject)

ans =

 0.0873 0.5000

2-118

 midicontrols

 0.5000 0.5000

Specify Controls Numbers, Initial Value, and Output Mode

Determine the control numbers of two different controls on your MIDI device.

[controlNumber1,~] = midiid;

[controlNumber2,~] = midiid;

controlNumbers = [controlNumber1,controlNumber2];

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Create a midicontrols object that listens to your specified controls. Specify an initial
value for all controls.

initialValue = 12;

midicontrolsObject = midicontrols(controlNumbers,initialValue,'OutputMode','rawmidi');

Move one of your specified controls, and then read the latest value of all your specified
controls.

midiread(midicontrolsObject)

ans =

 63 12

Set the Default MIDI Device

Assume that your MIDI device is a Behringer BCF2000. Enter this syntax at the
MATLAB command line:

setpref midi DefaultDevice BCF2000

This preference persists across MATLAB sessions. You do not need to set it again unless
you want to change your default device.

Specify Control Numbers and MIDI Device Name

Assume that your MIDI device is a Behringer BCF2000 and has a control with
identification number 1001. Create a midicontrols object, which listens to control
number 1001 on your Behringer BCF2000 device.

2-119

2 Functions in Audio System Toolbox

midicontrolsObject = midicontrols(1001,'MIDIDevice','BCF2000');

Input Arguments

controlNumbers — MIDI device control numbers
integer | array of integers

MIDI device control numbers, specified as an integer or array of integers. Use midiid
to interactively identify the control numbers of your device. See “MIDI Device Control
Numbers” on page 2-122 for an advanced explanation of how controlNumbers are
determined.

If you specify controlNumbers as an empty vector, [], then the midicontrols object
responds to any control on your MIDI device.
Example: 1081

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

initialValues — Initial values of MIDI controls
0 (default) | scalar | array the same size as controlNumbers

Initial values of MIDI controls, specified as a scalar or an array the same size as
controlNumbers. If you specify initialValues as a scalar, all controls specified by
controlNumbers are assigned that value.

The value associated with your MIDI controls cannot be determined until you move a
MIDI control. If you specify an initial value associated with your MIDI control, the initial
value is returned by the midiread function until the MIDI control is moved.

• If OutputMode is specified as 'normalized', then initial values must be in the
range [0,1]. Actual initial values are quantized and can be slightly different from
initial values specified when your midicontrols object is created.

• If OutputMode is specified as ‘rawmidi’, then initial values must be integers in the
range [0,127]

Example: 0.3

Example: [0,0.3,0.6]

2-120

 midicontrols

Example: 5

Example: [5;15;20]

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

deviceName — MIDI device name
string

MIDI device name, assigned by the device manufacturer or host operating system,
specified as a string. The specified deviceName can be a substring of the exact name of
your device. If you do not specify deviceName, the default MIDI device is used. See “Set
the Default MIDI Device” on page 2-119 for an example of specifying a default MIDI
device.

If you do not set a default MIDI device, the host operating system chooses the default
device in an unspecified way. As a best practice, use midiid to identify the name of the
device you want.
Example: 'MIDIDevice','BCF2000 MIDI 1'

Data Types: char

mode — Output mode for MIDI control value
'normalized' (default) | 'rawmidi'

Output mode for MIDI control value, specified as 'normalized' or 'rawmidi'.

• 'normalized' — Values of your MIDI control are normalized. If your
midicontrols object is called by midiread, then values in the range [0,1] are
returned.

• 'rawmidi' — Values of your MIDI control are not normalized. If your
midicontrols object is called by midiread, then integer values in the range [0,127]
are returned.

Example: 'OutputMode','normalized'

Example: 'OutputMode','rawmidi'

Data Types: char

2-121

2 Functions in Audio System Toolbox

Output Arguments

midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device.

Definitions

MIDI Device Control Numbers

MATLAB defines MIDI device control numbers as (MIDI Channel Number) × 1000 +
(MIDI Controller Number).

• MIDI Channel Number is the transmission channel that your device uses to send
messages. This value is in the range 1–16.

• MIDI Controller Number is a number assigned to an individual control on your MIDI
device. This value is in the range 1–127.

Your MIDI device determines the values of MIDI Channel Number and MIDI Controller
Number.

See Also

See Also

Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midiid | midiread | midisync | setpref

Topics
“Musical Instrument Digital Interface (MIDI)”
“MIDI Control for Audio Plugins”

2-122

 midiid

midiid
Interactively identify MIDI control

Syntax

[controlNumber,deviceName] = midiid

Description

[controlNumber,deviceName] = midiid returns the control number and device
name of the MIDI control you move. Call the function and then move the control you
want to identify. The function detects which control you move and returns the control
number and device name that specify that control.

Examples

Identify Control Number and Device Name

Call midiid and then move the control you want to identify on the MIDI device you want
to identify.

[ctl,dev] = midiid;

Move the control you wish to identify; type ^C to abort.

Waiting for control message...

ctl =

1002

dev =

nanoKONTROL

Output Arguments

controlNumber — MIDI device control number
integer

2-123

2 Functions in Audio System Toolbox

MIDI device control number, specified as an integer. The device manufacturer assigns
the value to the control for identification purposes.

deviceName — MIDI device name
string

MIDI device name assigned by the device manufacturer or host operating system,
specified as a string.

See Also

See Also

Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midicontrols | midiread | midisync | setpref

Topics
“Musical Instrument Digital Interface (MIDI)”
“MIDI Control for Audio Plugins”

2-124

 midiread

midiread
Return most recent value of MIDI controls

Syntax

controlValues = midiread(midicontrolsObject)

Description

controlValues = midiread(midicontrolsObject) returns the most recent value
of the MIDI controls associated with the specified midicontrolsObject. To create this
object, use the midicontrols function.

Examples

Read Control Values of MIDI Device

midicontrolsObject = midicontrols;

controlValue = midiread(midicontrolsObject);

Read Multiple Control Values of MIDI Device

Identify two MIDI controls on your MIDI device.

[controlOne,~] = midiid

[controlTwo,~] = midiid

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

controlOne =

 1081

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

2-125

2 Functions in Audio System Toolbox

controlTwo =

 1082

Create a MIDI controls object that listens to both controls you identified.

controlNumbers = [controlOne,controlTwo];

midicontrolsObject = midicontrols(controlNumbers);

Move your specified MIDI controls and return their values. The values are returned as a
vector that corresponds to your control numbers vector, controlNumbers.

tic

while toc < 5

 controlValues = midiread(midicontrolsObject)

end

controlValues =

 0.0397 0.0556

Read Control Values in an Audio Stream Loop

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber, deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Create a MIDI controls object. The value associated with your MIDI controls object
cannot be determined until you move the MIDI control. Specify an initial value
associated with your MIDI control. The midiread function returns the initial value until
the MIDI control is moved.

initialControlValue = 1;

midicontrolsObject = midicontrols(controlNumber,initialControlValue);

Create a dsp.AudioFileReader System object with default settings. Create an
audioDeviceWriter System object and specify the sample rate.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');

deviceWriter = audioDeviceWriter(...

2-126

 midiread

 'SampleRate',fileReader.SampleRate);

In an audio stream loop, read an audio signal frame from the file, apply gain specified by
the control on your MIDI device, and then write the frame to your audio output device.
By default, the control value returned by midiread is normalized.

while ~isDone(fileReader)

 audioData = step(fileReader);

 controlValue = midiread(midicontrolsObject);

 gain = controlValue*2;

 audioDataWithGain = audioData*gain;

 play(deviceWriter,audioDataWithGain);

end

Close the input file and release your output device.

release(fileReader);

release(deviceWriter);

Input Arguments

midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

Output Arguments

controlValues — Most recent values of MIDI controls
[0,1] (default) | integer values in the range [0,127]

Most recent values of MIDI controls, returned as normalized values in the range
[0,1], or as integer values in the range [0,127]. The output values depend on the
OutputMode specified when your midicontrols object is created.

• If OutputMode was specified as 'normalized', then midiread returns values in
the range [0,1]. The default OutputMode is 'normalized'.

2-127

2 Functions in Audio System Toolbox

• If OutputMode was specified as 'rawmidi', then midiread returns integer values
in the range [0,127], and no quantization is required.

See Also

See Also

Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midicontrols | midiid | midisync | setpref

Topics
“Musical Instrument Digital Interface (MIDI)”
“MIDI Control for Audio Plugins”

2-128

 midisync

midisync

Send values to MIDI controls for synchronization

Syntax

midisync(midicontrolsObject)

midisync(midicontrolsObject,controlValues)

Description

midisync(midicontrolsObject) sends the initial values of controls to your
MIDI device, as specified by your MIDI controls object. To create this object, use the
midicontrols function. If your MIDI device can receive and respond to messages, it
adjusts its controls as specified.

Note: Many MIDI devices are not bidirectional. Calling midisync with a unidirectional
device has no effect. midisync cannot tell whether a value is successfully sent to a
device or even whether the device is bidirectional. If sending a value fails, no errors or
warnings are generated.

midisync(midicontrolsObject,controlValues) sends controlValues to the
MIDI controls associated with the specified midicontrolsObject.

Examples

Synchronize MIDI Control to Initial Value

Use midiid to identify a control on your default MIDI device.

[controlNumber,~] = midiid;

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

2-129

2 Functions in Audio System Toolbox

Create a MIDI controls object. Specify an initial value for your control. Call midisync to
set the specified control on your device to the initial value.

initialValue = 0.5;

midicontrolsObject = midicontrols(controlNumber,initialValue);

midisync(midicontrolsObject);

Synchronize MIDI Control to Specified Value

Use midiid to identify three controls on your default MIDI device.

[controlNumber1,~] = midiid;

[controlNumber2,~] = midiid;

[controlNumber3,~] = midiid;

controlNumbers = [controlNumber1,controlNumber2,controlNumber3];

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Create a MIDI controls object. Specify initial values for your controls. Call midisync to
set the specified control on your device to the initial value.

controlValues = [0,0,1];

midicontrolsObject = midicontrols(controlNumbers,controlValues);

midisync(midicontrolsObject);

Create a loop that updates your control values and synchronizes those values to the
physical controls on your device.

for i = 1:100

 controlValues = controlValues + [0.006,0.008,-0.008];

 midisync(midicontrolsObject,controlValues);

 pause(0.1)

end

Create UI Slider and Synchronize with MIDI Control

Define this function and save it to your current folder.

function trivialmidigui(controlNumber,deviceName)

2-130

 midisync

 slider = uicontrol('Style','slider');

 mc = midicontrols(controlNumber,'MIDIDevice',deviceName);

 midisync(mc);

 set(slider,'Callback',@slidercb);

 midicallback(mc, @mccb);

 function slidercb(slider,~)

 val = get(slider,'Value');

 midisync(mc, val);

 disp(val);

 end

 function mccb(mc)

 val = midiread(mc);

 set(slider,'Value',val);

 disp(val);

 end

end

Use midiid to identify a control number and device name. Call the function you created,
specifying the control number and device name as inputs.

[controlNumber,deviceName] = midiid;

trivialmidigui(controlNumber,deviceName)

The slider on the user interface is synchronized with the specified control on your device.
Move one to see the other respond.

Input Arguments

midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

controlValues — Values sent to MIDI device
initial values specified by midicontrolsObject (default) | scalar | array

Values sent to MIDI device, specified as a scalar or an array the same size as
controlNumbers of the associated midicontrols object. If you do not specify

2-131

2 Functions in Audio System Toolbox

controlValues, the default value is the initialValues of the associated
midicontrols object.

The possible range for controlValues depends on the OutputMode of the associated
midicontrols object.

• If OutputMode is specified as 'normalized', then controlValues must consist of
values in the range [0,1]. The default OutputMode is 'normalized'.

• If OutputMode is specified as 'rawmidi', then controlValues must consist of
integer values in the range [0,127].

Example: 0.3

Example: [0,0.3,0.6]

Example: 5

Example: [5;15;20]

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also

See Also

Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midicontrols | midiid | midiread | setpref

Topics
“Musical Instrument Digital Interface (MIDI)”
“MIDI Control for Audio Plugins”

2-132

 validateAudioPlugin

validateAudioPlugin
Test MATLAB source code for audio plugin

Syntax

validateAudioPlugin pluginClass

validateAudioPlugin options pluginClass

Description

validateAudioPlugin pluginClass generates and runs a “Test Bench Procedure” on
page 2-135 that exercises your audio plugin class.

validateAudioPlugin options pluginClass specifies options to modify the default
“Test Bench Procedure” on page 2-135.

Examples

Validate Audio Plugin

validateAudioPlugin audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.

Generating testbench file 'testbench_Echo.m'... done.

Running testbench... passed.

Generating mex file 'testbench_Echo_mex.mexw64'... done.

Running mex testbench... passed.

Deleting testbench.

Ready to generate audio plug-in.

Skip MEX Version of Test Bench

validateAudioPlugin -nomex audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.

Generating testbench file 'testbench_Echo.m'... done.

2-133

2 Functions in Audio System Toolbox

Running testbench... passed.

Skipping mex.

Deleting testbench.

Keep Test Benches After Validation

validateAudioPlugin -keeptestbench audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.

Generating testbench file 'testbench_Echo.m'... done.

Running testbench... passed.

Generating mex file 'testbench_Echo_mex.mexw64'... done.

Running mex testbench... passed.

Keeping testbench.

Ready to generate audio plug-in.

Two test benches are saved to your current folder:

• testbench_Echo.m

• testbench_Echo_mex.mexw64

Skip MEX Version and Keep Test Bench

validateAudioPlugin -keeptestbench -nomex audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.

Generating testbench file 'testbench_Echo.m'... done.

Running testbench... passed.

Skipping mex.

Keeping testbench.

One test bench is saved to your current folder:

• testbench_Echo.m

Input Arguments

options — Options to modify test bench procedure
-nomex | -keeptestbench

Options to modify test bench procedure, specified as -nomex or -keeptestbench.
Options can be specified together or separately, and in any order.

2-134

 validateAudioPlugin

• -nomex — validateAudioPlugin does not generate and run a MEX version of the
test bench file. This option significantly reduces run time of the test bench procedure.

• -keeptestbench — validateAudioPlugin saves the generated test benches to the
current folder.

pluginClass — Name of the plugin class to validate
plugin class

Name of the plugin class to validate. The plugin class must derive from either the
audioPlugin class or the audioPluginSource class. The validateAudioPlugin function
exercises an instance of the specified plugin class.

Limitations

The valdiateAudioPlugin function is compatible with Windows and Mac operating
systems. It is not compatible with Linux.

Definitions

Test Bench Procedure

The valudateAudioPlugin function uses dynamic testing to find common
audio plugin programming mistakes not found by the static checks performed by
generateAudioPlugin. The function:

1 Runs a subset of error checks performed by generateAudioPlugin.
2 Generates and runs a MATLAB test bench to exercise the class.
3 Generates and runs a MEX version of the test bench.
4 Removes the generated test benches.

If the plugin class fails testing, step 4 is automatically omitted. To debug your plugin,
step through the saved generated test bench.

If you use the -keeptestbench option, or if an error occurs during validation, the test
bench files are saved to your current folder.

2-135

2 Functions in Audio System Toolbox

See Also

See Also

Functions
generateAudioPlugin

Classes
audioPlugin | audioPluginSource

Topics
“Design an Audio Plugin”

Introduced in R2016a

2-136

3

System objects in Audio System
Toolbox

3 System objects in Audio System Toolbox

audioPlayerRecorder System object

Simultaneously play and record using an audio device

Description

The audioPlayerRecorder System object reads and writes audio samples using your
computer’s audio device. To use audioPlayerRecorder, you must have an audio device
and driver capable of simultaneous playback and record.

To simultaneously play and record:

1 Define and set up your audio player recorder. See “Construction” on page 3-3.
2 Call step to stream data from and to your audio device.

Note: Alternatively, instead of using the step method to perform the operation defined
by the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

3-2

 audioPlayerRecorder System object

Construction

aPR = audioPlayerRecorder returns a System object, aPR, that plays audio samples
to an audio device, and records samples from the same audio device, in real time.

aPR = audioPlayerRecorder(sampleRateValue) sets the SampleRate property to
sampleRateValue.

aPR = audioPlayerRecorder(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Example: aPR = audioPlayerRecorder(12000,'BitDepth','8-bit integer')
creates a System object, aPR, with the SampleRate property set to 12000 and the
BitDepth property set to '8-bit integer'.

Properties

Device — Device used to play and record audio data
default audio device (default) | character vector

Device used to play and record audio data, specified as a character vector. The object
supports only devices enabled for simultaneous playback and recording (full-duplex
mode). Use the getAudioDevices method to list available devices.

Supported drivers for audioPlayerRecorder are platform specific:

• Windows — ASIO
• Mac — CoreAudio
• Linux — ALSA

Note: The default audio device is the default device of your machine only if it supports
full-duplex mode. If your machine’s default audio device does not support full-duplex
mode, audioPlayerRecorder specifies as the default device the first available device it
detects that is capable of full-duplex mode. Use the info method to get the device name
associated with your audioPlayerRecorder object.

SampleRate — Sample rate used by device to record and play audio data (Hz)
44100 (default) | positive integer

3-3

3 System objects in Audio System Toolbox

Sample rate used by device to record and play audio data, in Hz, specified as a positive
integer. The range of SampleRate depends on your audio hardware.

BitDepth — Data type used by device
'16-bit integer' (default) | '8-bit integer' | '32-bit float' | '24-bit
float'

Data type used by device, specified as a character vector.

SupportVariableSize — Option to support variable frame size
false (default) | true

Option to support variable frame size, specified as false or true.

• false — If the audioPlayerRecorder object is locked, the input must have the
same frame size at each call. The buffer size of your audio device is the same as the
input frame size. If you are using the object on Windows, open the ASIO UI to set the
sound card buffer to the frame size value.

• true — If the audioPlayerRecorder object is locked, the input frame size can
change at each call. The buffer size of your audio device is specified through the
BufferSize property.

To minimize latency, set SupportVariableSize to false. If variable-size input is
required by your audio system, set SupportVariableSize to true.

BufferSize — Buffer size of audio device
1024 (default) | positive integer

Buffer size of audio device, specified as a positive integer.

Note: If you are using the object on a Windows machine, open the ASIO UI to set the
sound card buffer size to the BufferSize value of your audioPlayerRecorder System
object.

To enable this property, set SupportVariableSize to true.

PlayerChannelMapping — Mapping between columns of played data and channels of
device
[] (default) | scalar | vector

3-4

 audioPlayerRecorder System object

Mapping between columns of played data and channels of output device, specified as a
scalar or as a vector of valid channel indices. The default value of this property is [],
which means that the default channel mapping is used.

RecorderChannelMapping — Mapping between channels of device and columns of
recorded data
1 (default) | scalar | vector

Mapping between channels of your audio device and columns of recorded data, specified
as a scalar or as a vector of valid channel indices. The default value is 1, which means
that the first recording channel on the device is used to acquire data and is mapped to a
single-column matrix.

Methods

getAudioDevices List available audio devices
info Get information about audio I/O system
step Stream audio data from and to device

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Synchronize Playback and Recording

Synchronize playback and recording using a single audio device. If synchronization is
lost, print information about samples dropped.

Create objects to read from and write to an audio file. Create an audioPlayerRecorder
object to play an audio signal to your device and simultaneously record audio from your
device.

3-5

3 System objects in Audio System Toolbox

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav', ...

 'SamplesPerFrame',256);

fs = fileReader.SampleRate;

fileWriter = dsp.AudioFileWriter('Counting-PlaybackRecorded.wav', ...

 'SampleRate',fs);

aPR = audioPlayerRecorder('SampleRate',fs);

In a frame-based loop:

1 Read an audio signal from your file.
2 Play the audio signal to your device and simultaneously record audio from your

device. Use the optional nUnderruns and nOverruns output arguments to track
any loss of synchronization.

3 Write your recorded audio to a file.

Once the loop is completed, release the objects to free devices and resoures.

while ~isDone(fileReader)

 audioToPlay = fileReader();

 [audioRecorded,nUnderruns,nOverruns] = aPR(audioToPlay);

 fileWriter(audioRecorded)

 if nUnderruns > 0

 fprintf('Audio player queue was underrun by %d samples.\n',nUnderruns);

 end

 if nOverruns > 0

 fprintf('Audio recorder queue was overrun by %d samples.\n',nOverruns);

 end

end

release(fileReader);

release(fileWriter);

release(aPR);

Audio player queue was underrun by 6400 samples.

3-6

 audioPlayerRecorder System object

Audio recorder queue was overrun by 3840 samples.

Specify Nondefault Channel Mapping

The audioPlayerRecorder System object™ enables you to specify a nondefault
mapping between the channels of your audio device and the data sent to and received
from your audio device. To run this example, your audio device must have at least two
channels and be capable of full-duplex mode.

Create an audioPlayerRecorder object with default settings. The
audioPlayerRecorder is automatically configured to a compatible device and driver.

aPR = audioPlayerRecorder;

The audioPlayerRecorder combines reading from your device and writing to your
device in a single call: audioFromDevice = aPR(audioToDevice). Calling the
audioPlayerRecorder with default settings:

• Maps columns of audioToDevice to output channels of your device
• Maps input channels of your device to columns of audioFromDevice

By default, audioFromDevice is a one-column matrix corresponding to channel 1 of
your audio device. To view the maximum number of input and output channels of your
device, use the info method.

aPRInfo = info(aPR);

aPRInfo is returned as a structure with fields containing information about your
selected driver, audio device, and the maximum number of input and output channels in
your configuration.

Call the audioPlayerRecorder with a two-column matrix. By default, column one is
mapped to output channel one, and column two is mapped to output channel two. The
audioPlayerRecorder returns a one-column matrix with the same number of rows as
the audioToDevice matrix.

highToneGenerator = audioOscillator('Frequency',600,'SamplesPerFrame',256);

lowToneGenerator = audioOscillator('Frequency',200,'SamplesPerFrame',256);

for i = 1:250

 C = highToneGenerator();

 D = lowToneGenerator();

 audioToDevice = [C,D];

3-7

3 System objects in Audio System Toolbox

 audioFromDevice = aPR(audioToDevice);

end

Specify a nondefault channel mapping for your audio output. Specify that column one of
audioToDevice maps to channel two, and that column two of audioToDevice maps to
channel one. To modify the channel mapping, the audioPlayerRecorder object must be
unlocked.

Run the audioPlayerRecorder object. If you are using headphones or stereo speakers,
notice that the high frequency and low frequency tones have switched speakers.

release(aPR)

aPR.PlayerChannelMapping = [2,1];

for i = 1:250

 C = highToneGenerator();

 D = lowToneGenerator();

 audioToDevice = [C,D];

 audioFromDevice = aPR(audioToDevice);

end

3-8

 audioPlayerRecorder System object

Specify a nondefault channel mapping for your audio input. Record data from only
channel two of your device. In this case, channel two is mapped to a one-column matrix.
Use size to verify that audioFromDevice is a 256-by-1 matrix.

release(aPR)

aPR.RecorderChannelMapping = 2;

audioFromDevice = aPR(audioToDevice);

[rows,col] = size(audioFromDevice)

rows =

 256

col =

 1

As a best practice, release your audio device once complete.

3-9

3 System objects in Audio System Toolbox

release(aPR)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also

See Also

Blocks
Audio Device Reader | Audio Device Writer

System Objects
audioDeviceWriter | audioDeviceReader | dsp.AudioFileReader

Topics
“Audio I/O: Buffering, Latency, and Throughput”
“Run Audio I/O Features Outside MATLAB and Simulink”
“Real-Time Audio in MATLAB”

Introduced in R2017a

3-10

 getAudioDevices

getAudioDevices
System object: audioPlayerRecorder

List available audio devices

Syntax

devices = getAudioDevices(aPR)

Description

devices = getAudioDevices(aPR) returns a cell array listing available audio
devices. The list of available audio devices support full-duplex mode and have an
appropriate driver:

• Windows — ASIO
• Mac — CoreAudio
• Linux — ALSA

Introduced in R2017a

3-11

3 System objects in Audio System Toolbox

info
System object: audioPlayerRecorder

Get information about audio I/O system

Syntax

aPRInfo = info(aPR)

Description

aPRInfo = info(aPR) returns a structure containing information about your
audioPlayerRecorder System object. The structure contains information about the
driver, device, maximum recorder channels, and maximum player channels for your
audioPlayerRecorder System object.

Introduced in R2017a

3-12

 step

step
System object: audioPlayerRecorder

Stream audio data from and to device

Syntax

[audioFromDevice,numUnderrun,numOverrun] = step(aPR,audioToDevice)

Description

Note: Alternatively, instead of using the step method to perform the operation defined
by the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj) and y = obj() perform equivalent operations.

[audioFromDevice,numUnderrun,numOverrun] = step(aPR,audioToDevice)

writes one frame of audio samples, audioToDevice, to the selected audio device and
returns a frame of audio samples from the device. numUnderrun is the number of
samples by which the player queue was underrun since the last call to the step method.
numOverrun is the number of samples by which the recorder queue was overrun since
the last call to the step method.

When you call the step method of an audioPlayerRecorder System object, the audio
device specified by the Device property is locked. An audio device can be locked by only
one audioPlayerRecorder at a time. To release the audio device, call the release
method of the audioPlayerRecorder System object.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

3-13

3 System objects in Audio System Toolbox

Introduced in R2017a

3-14

 audioDeviceReader System object

audioDeviceReader System object

Record from sound card

Description

The audioDeviceReader System object reads audio samples using your computer’s
audio input device. See “Audio Device Reader System Interaction” on page 3-25 for a
visualization of how the audioDeviceReader acquires data.

To stream data from an audio device:

1 Define and set up your audio device reader. See “Construction” on page 3-15.
2 Call step or record to stream data from your audio device.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

aDR = audioDeviceReader returns a System object, aDR, that reads audio samples
using an audio input device in real time.

aDR = audioDeviceReader(sampleRateValue) sets the SampleRate property to
sampleRateValue.

aDR = audioDeviceReader(sampleRateValue,samplesPerFrameValue) sets the
SamplesPerFrame property to samplesPerFrameValue.

aDR = audioDeviceReader(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Example: aDR = audioDeviceReader(12000,'BitDepth','8-bit integer')
creates a System object, aDR, with the SampleRate property set to 12000 and the
BitDepth property set to '8-bit integer'.

3-15

3 System objects in Audio System Toolbox

Properties

Driver — Driver used to access audio device (Windows only)
'DirectSound' (default) | 'ASIO' | 'WASAPI'

Driver used to access your audio device, specified as 'DirectSound', 'ASIO', or
'WASAPI'.

• ASIO drivers do not come pre-installed on Windows machines. To use the 'ASIO'
driver option, install an ASIO driver outside of MATLAB .

Note: If Driver is specified as 'ASIO', open the ASIO UI outside of MATLAB
to set the sound card buffer size to the SamplesPerFrame value of your
audioDeviceReader System object. See your ASIO driver documentation for more
information.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and
WASAPI drivers, set SampleRate to a sample rate supported by your audio device.

This property applies only on Windows machines. Linux machines always use the ALSA
driver. Mac machines always use the CoreAudio driver.

Device — Device used to acquire audio samples
default audio device (default) | character vector

Device used to acquire audio samples, specified as a character vector. Use the
getAudioDevices method to list available devices.

NumChannels — Number of input channels acquired by audio device
1 (default) | integer

Number of input channels acquired by audio device, specified as an integer. The range of
NumChannels depends on your audio hardware.

This property is available when you set ChannelMappingSource to 'Auto'.

SamplesPerFrame — Frame size read from audio device
1024 (default) | integer

3-16

 audioDeviceReader System object

Frame size read from audio device, specified as a positive integer. SamplesPerFrame
is also the size of your device buffer, and the number of columns of the output matrix
returned when calling step or record on audioDeviceReader.

SampleRate — Sample rate used by device to acquire audio data (Hz)
44100 (default) | positive integer

Sample rate used by device to acquire audio data, in Hz, specified as a positive integer.
The range of SampleRate depends on your audio hardware.

BitDepth — Data type used by device to acquire audio data
'16-bit integer' (default) | '8-bit integer' | '32-bit float' | '24-bit
float'

Data type used by device to acquire audio data, specified as a character vector.

ChannelMappingSource — Source of mapping between channels of input device and
columns of output matrix
'Auto' (default) | 'Property'

Source of mapping between the channels of your audio input device and columns of the
output matrix, specified as 'Auto' or 'Property'.

• 'Auto' — The default settings determine the mapping between device channels
and output matrix. For example, suppose that your audio device has six channels
available, and you set NumChannels to 6. The output from a call to step or record
is a six-column matrix. Column 1 corresponds with channel 1, column 2 corresponds
with channel 2, and so on.

• 'Property' — The ChannelMapping property determines mapping between
channels of your audio device and columns of the output matrix.

ChannelMapping — Nondefault mapping between channels of input device and columns of
output matrix
[1:MaximumInputChannels] (default) | scalar | vector

Nondefault mapping between channels of your audio input device and columns of the
output matrix, specified as a vector of valid channel indices. See the “Specify Channel
Mapping for audioDeviceReader” on page 3-22 example for more information.

This property is available when you set ChannelMappingSource to 'Property'.

OutputDataType — Data type of the output
'double' (default) | 'single' | 'int32' | 'int16' | 'uint8'

3-17

3 System objects in Audio System Toolbox

Data type of the output, specified as a character vector.

Note: If OutputDataType is specified as 'double' or 'single', the audio device
reader outputs data in the range [–1, 1]. For other data types, the range is [min, max] of
the specified data type.

Methods

getAudioDevices List available audio input devices
info Get information about selected device
record Stream audio data from input device
step Stream audio data from input device

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Read from Microphone and Write to Audio File

Record ten seconds of speech with a microphone and send the output to a .wav file.

Create an audioDeviceReader System object™ with default settings. Call setup to
reduce the computational load of initialization in an audio stream loop.

deviceReader = audioDeviceReader;

setup(deviceReader);

Create a dsp.AudioFileWriter System object. Specify the file name and type to write.

fileWriter = dsp.AudioFileWriter(...

 'mySpeech.wav',...

3-18

 audioDeviceReader System object

 'FileFormat','WAV');

Record 10 seconds of speech. In an audio stream loop, read an audio signal frame from
the device, and write the audio signal frame to a specified file. The file saves to your
current folder.

disp('Speak into microphone now.');

tic;

while toc < 10

 acquiredAudio = deviceReader();

 fileWriter(acquiredAudio);

end

disp('Recording complete.');

Speak into microphone now.

Recording complete.

Release the audio device and close the output file.

release(deviceReader);

release(fileWriter);

Reduce Latency Due to Input Device Buffer

Latency due to the input device buffer is the time delay of acquiring one frame of data.
In this example, you modify default properties of your audioDeviceReader System
object™ to reduce latency.

Create an audioDeviceReader System object with default settings.

deviceReader = audioDeviceReader

deviceReader =

 audioDeviceReader with properties:

 Driver: 'DirectSound'

 Device: 'No audio input device detected'

 NumChannels: 1

 SamplesPerFrame: 1024

 SampleRate: 44100

 Use get to show all properties

3-19

3 System objects in Audio System Toolbox

Calculate the latency due to your device buffer.

fprintf('Latency due to device buffer: %f seconds.\n',...

 deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Latency due to device buffer: 0.023220 seconds.

Set the SamplesPerFrame property of your audioDeviceReader System object to 64.
Calculate the latency.

deviceReader.SamplesPerFrame = 64;

fprintf('Latency due to device buffer: %f seconds.\n',...

 deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Latency due to device buffer: 0.001451 seconds.

Set the SampleRate property of your audioDeviceReader System object to 96,000.
Calculate the latency.

deviceReader.SampleRate = 96000;

fprintf('Latency due to device buffer: %f seconds.\n',...

 deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Latency due to device buffer: 0.000667 seconds.

Determine and Decrease Overrun

Overrun refers to input signal drops, which occur when the audio stream loop does
not keep pace with the device. Determine overrun of an audio stream loop, add an
artificial computational load to the audio stream loop, and then modify properties of your
audioDeviceReader System object™ to decrease overrun. Your results depend on your
computer.

Create an audioDeviceReader System object with SamplesPerFrame set to 256 and
SampleRate set to 44,100. Call setup to reduce the computational load of initialization
in an audio stream loop.

deviceReader = audioDeviceReader(...

 'SamplesPerFrame',256,...

 'SampleRate',44100);

setup(deviceReader);

Create a dsp.AudioFileWriter System object. Specify the file name and type to write.

fileWriter = dsp.AudioFileWriter(...

 'mySpeech.wav',...

3-20

 audioDeviceReader System object

 'FileFormat','WAV');

Record 5 seconds of speech. In an audio stream loop, read an audio signal frame from
your device, and write the audio signal frame to a specified file.

totalOverrun = 0;

disp('Speak into microphone now.');

tic;

while toc < 5

 [input,numOverrun] = deviceReader();

 totalOverrun = totalOverrun + numOverrun;

 fileWriter(input);

end

fprintf('Recording complete.\n')

fprintf('Total number of samples overrun: %d.\n',...

 totalOverrun);

fprintf('Total seconds overrun: %d.\n',...

 double(totalOverrun)/double(deviceReader.SampleRate));

Speak into microphone now.

Recording complete.

Total number of samples overrun: 0.

Total seconds overrun: 0.

Release your audioDeviceReader and dsp.AudioDeviceWriter System objects and
zero your counter variable.

release(fileWriter);

release(deviceReader);

totalOverrun = 0;

Add an artificial computational load to your audio stream loop. The computational load
causes the audio stream loop to go slower than the device, which causes acquired samples
to be dropped.

disp('Speak into microphone now.');

tic;

while toc < 5

 [input,numOverrun] = deviceReader();

 totalOverrun = totalOverrun + numOverrun;

 fileWriter(input);

 pause(0.01)

end

fprintf('Recording complete.\n')

fprintf('Total number of samples overrun: %d.\n',...

3-21

3 System objects in Audio System Toolbox

 totalOverrun);

fprintf('Total seconds overrun: %d.\n',...

 double(totalOverrun)/double(deviceReader.SampleRate));

Speak into microphone now.

Recording complete.

Total number of samples overrun: 93440.

Total seconds overrun: 2.118821e+00.

Release your audioDeviceReader and dsp.AudioFileWriter System objects, and set
the SamplePerFrame property to 512. The device buffer size increases so that the device
now takes longer to acquire a frame of data. Set your counter variable to zero.

release(fileWriter);

release(deviceReader);

deviceReader.SamplesPerFrame = 512;

totalOverrun = 0;

Calculate the total overrun of the audio stream loop using your modified
SamplesPerFrame property.

disp('Speak into microphone now.');

tic;

while toc < 5

 [input,numOverrun] = deviceReader();

 totalOverrun = totalOverrun + numOverrun;

 fileWriter(input);

 pause(0.01)

end

fprintf('Recording complete.\n')

fprintf('Total number of samples overrun: %d.\n',...

 totalOverrun);

fprintf('Total seconds overrun: %f.\n',...

 totalOverrun/deviceReader.SampleRate);

Speak into microphone now.

Recording complete.

Total number of samples overrun: 0.

Total seconds overrun: 0.000000.

Specify Channel Mapping for audioDeviceReader

Specify non-default channel mapping for an audioDeviceReader System object™. This
example is hardware specific. It assumes that your computer has a default audio input
device with two available channels.

3-22

 audioDeviceReader System object

Create an audioDeviceReader System object with default settings.

deviceReader = audioDeviceReader;

The default number of channels is 1. Call your audioDeviceReader System object like
a function with no arguments to read one frame of data from your audio device. Verify
that the output data matrix has one column.

x = deviceReader();

[frameLength,numChannels] = size(x)

frameLength =

 1024

numChannels =

 1

Use info to determine the maximum number of input channels available with your
specified Driver and Device configuration.

info(deviceReader)

ans =

 struct with fields:

 Driver: 'DirectSound'

 DeviceName: 'Primary Sound Capture Driver'

 MaximumInputChannels: 2

Set ChannelMappingSource to 'Property'. The audioDeviceReader System object
must be unlocked to change this property.

release(deviceReader);

deviceReader.ChannelMappingSource = 'Property'

deviceReader =

3-23

3 System objects in Audio System Toolbox

 System: audioDeviceReader

 Properties:

 Driver: 'DirectSound'

 Device: 'Default'

 SamplesPerFrame: 1024

 SampleRate: 44100

 Advanced properties:

 BitDepth: '16-bit integer'

 ChannelMappingSource: 'Property'

 ChannelMapping: [1 2]

 OutputDataType: 'double'

By default, if ChannelMappingSource is set to 'Property', all available channels are
mapped to the output. Call your audioDeviceReader System object to read one frame
of data from your audio device. Verify that the output data matrix has two columns.

x = deviceReader();

[frameLength,numChannels] = size(x)

frameLength =

 1024

numChannels =

 2

Use the ChannelMapping property to specify an alternative mapping between channels
of your device and columns of the output matrix. Indicate the input channel number at
an index corresponding to the output column. To change this property, first unlock the
audioDeviceReader System object.

release(deviceReader);

deviceReader.ChannelMapping = [2,1];

If you call your audioDeviceReader:

3-24

 audioDeviceReader System object

• Input channel 1 of your device maps to the second column of your output matrix.
• Input channel 2 of your device maps to the first column of your output matrix.

Acquire a specific channel from your input device.

deviceReader.ChannelMapping = 2;

If you call your audioDeviceReader, input channel 2 of your device maps to an output
vector.

More About

Audio Device Reader System Interaction

The audio device reader specifies the driver, the device and its attributes, and the data
type and size output from your System object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

3-25

3 System objects in Audio System Toolbox

See Also

See Also

Blocks
Audio Device Reader

System Objects
audioDeviceWriter | audioPlayerRecorder | dsp.AudioFileReader

Topics
“Audio I/O: Buffering, Latency, and Throughput”
“Run Audio I/O Features Outside MATLAB and Simulink”
“Real-Time Audio in MATLAB”

Introduced in R2016a

3-26

 getAudioDevices

getAudioDevices
System object: audioDeviceReader

List available audio input devices

Syntax

devices = getAudioDevices(aDR)

Description

devices = getAudioDevices(aDR) returns a cell array listing available audio input
devices. The list of available input devices depends on the specified Driver property of
your audioDeviceReader object.

Introduced in R2016a

3-27

3 System objects in Audio System Toolbox

info
System object: audioDeviceReader

Get information about selected device

Syntax

aDRInfo = info(aDR)

Description

aDRInfo = info(aDR) returns a structure containing information about your
audioDeviceReader System object. The structure contains information about the
driver, device, and maximum number of input channels for your audioDeviceReader
System object.

Introduced in R2016a

3-28

 record

record
System object: audioDeviceReader

Stream audio data from input device

Syntax

[x,numOverrun] = record(aDR)

Description

[x,numOverrun] = record(aDR) reads one frame of audio samples from the selected
audio input device and returns the number of samples by which the audio device reader’s
queue was overrun since the last call to record.

When you call the record method of an audioDeviceReader System object, the
audio device specified by the Device property is locked. An audio device can be
locked by only one audioDeviceReader at a time. Call the release method of the
audioDeviceReader System object to release the audio device.

Note: The System object performs an internal initialization the first time you execute
record. This initialization locks nontunable properties and input specifications,
such as the dimensions, complexity, and data type of the input data. If you change a
nontunable property or an input specification, the System object issues an error. To
change nontunable properties or inputs, you must first call the release method to
unlock the object.

Introduced in R2016a

3-29

3 System objects in Audio System Toolbox

step
System object: audioDeviceReader

Stream audio data from input device

Syntax

[x,numOverrun] = step(aDR)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj) and y = obj() perform equivalent operations.

[x,numOverrun] = step(aDR) reads one frame of audio samples from the selected
audio input device and returns the number of samples by which the audio device reader’s
queue was overrun since the last call to step.

When you call the step method of an audioDeviceReader System object, the
audio device specified by the Device property is locked. An audio device can be
locked by only one audioDeviceReader at a time. Call the release method of the
audioDeviceReader System object to release the audio device.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016a

3-30

 audioDeviceWriter System object

audioDeviceWriter System object

Play to sound card

Description

The audioDeviceWriter System object writes audio samples to an audio output device.
See “Audio Device Writer System Interaction” on page 3-40 for a visualization of how
the audioDeviceWriter System object plays audio samples.

To stream data to an audio device:

1 Define and set up your audio device writer. See “Construction” on page 3-31.
2 Call step or play to stream data to an audio device.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

aDW = audioDeviceWriter returns a System object, aDW that writes audio samples to
an audio output device in real time.

aDW = audioDeviceWriter(sampleRateValue) sets the SampleRate property to
sampleRateValue.

aDW = audioDeviceWriter(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Example: aDW = audioDeviceWriter(12000,'BitDepth','8-bit integer')
creates a System object, aDW, with the SampleRate property set to 12000 and the
BitDepth property set to '8-bit integer'.

3-31

3 System objects in Audio System Toolbox

Properties

Driver — Driver used to access audio device (Windows only)
'DirectSound' (default) | 'ASIO' | 'WASAPI'

Driver used to access your audio device, specified as 'DirectSound', 'ASIO', or
'WASAPI'.

• ASIO drivers do not come pre-installed on Windows machines. To use the 'ASIO'
driver option, install an ASIO driver outside of MATLAB.

Note: If Driver is specified as 'ASIO', open the ASIO UI outside of
MATLAB to set the sound card buffer size to the BufferSize value of
your audioDeviceWriter System object. See the documentation of your ASIO driver
for more information.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and
WASAPI drivers, set SampleRate to a sample rate supported by your audio device.

This property applies only on Windows machines. Linux machines always use the ALSA
driver. Mac machines always use the CoreAudio driver.

To specify nondefault Driver values, you must install Audio System Toolbox. If the
toolbox is not installed, specifying nondefault Driver values returns an error.

Device — Device used to play audio samples
default audio device (default) | character vector

Device used to play audio samples, specified as a character vector. Use the
getAudioDevices method to list available devices.

SampleRate — Sample rate of signal sent to audio device (Hz)
44100 (default) | positive integer

Sample rate of signal sent to audio device, in Hz, specified as a positive integer. The
range of SampleRate depends on your audio hardware.

BitDepth — Data type used by the device
'16-bit integer' (default) | '8-bit integer' | '24-bit integer' | '32-bit
float'

3-32

 audioDeviceWriter System object

Data type used by the device, specified as a character vector. Before performing digital-
to-analog conversion, the input data is cast to a data type specified by BitDepth.

To specify a nondefault BitDepth, you must install Audio System Toolbox. If the toolbox
is not installed, specifying a nondefault BitDepth returns an error.

SupportVariableSizeInput — Option to support variable frame size
false (default) | true

Option to support variable frame size, specified as true or false.

• false — If the audioDeviceWriter object is locked, the input must have the same
frame size at each call to step or play. The buffer size of your audio device is the
same as the input frame size.

• true — If the audioDeviceWriter object is locked, the input frame size can change
at each call to step or play. The buffer size of your audio device is specified through
the BufferSize property.

BufferSize — Buffer size of audio device
4096 (default) | positive integer

Buffer size of audio device, specified as a positive integer.

Note: If Driver is specified as 'ASIO', open the ASIO UI to set the sound card buffer
size to the BufferSize value of your audioDeviceWriter System object.

This property is available when you set SupportVariableSizeInput to true.

ChannelMappingSource — Source of mapping between columns of input matrix and
channels of output device
'Auto' (default) | 'Property'

Source of mapping between columns of input matrix and channels of audio output device,
specified as 'Auto' or 'Property'.

• 'Auto' — Default settings determine the mapping between columns of input matrix
and channels of audio output device. For example, suppose that your input is a matrix
with four columns, and your audio device has four channels available. Column 1 of
your input data writes to channel 1 of your device, column 2 of your input data writes
to channel 2 of your device, and so on.

3-33

3 System objects in Audio System Toolbox

• 'Property' — The ChannelMapping property determines the mapping between
columns of input matrix and channels of audio output device.

ChannelMapping — Nondefault mapping between columns of input matrix and channels of
output device
[1:MaximumOutputChannels] (default) | scalar | vector

Nondefault mapping between columns of input matrix and channels of output device,
specified as a scalar or vector of valid channel indices. See the “Specify Channel Mapping
for audioDeviceWriter” on page 3-38 example for more information.

This property is available when you set ChannelMappingSource to 'Property'.

To selectively map between columns of the input matrix and your sound card's output
channels, you must install Audio System Toolbox. If the toolbox is not installed,
specifying a nondefault ChannelMapping returns an error.

Methods

getAudioDevices List available audio input devices
info Get information about selected device
play Stream audio data to output device
step Stream audio data to output device

Examples

Read from File and Write to Audio Device

Read an MP3 audio file and play it through your default audio output device.

Create a dsp.AudioFileReader System object™ with default settings. Use the
audioinfo function to return a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

fileInfo = audioinfo('speech_dft.mp3');

Create an audioDeviceWriter System object and specify the sample rate. Call setup
to reduce the computational load of initialization in an audio stream loop.

3-34

 audioDeviceWriter System object

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileInfo.SampleRate);

setup(deviceWriter,...

 zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels));

In an audio stream loop, read an audio signal frame from the file, and write the frame to
your device.

while ~isDone(fileReader)

 audioData = fileReader();

 deviceWriter(audioData);

end

Close the input file and release the device.

release(fileReader);

release(deviceWriter);

Reduce Latency due to Output Device Buffer

Modify default properties of your audioDeviceWriter System object™ to reduce
latency due to device buffer size.

Create a dsp.AudioFileReader System object to read an audio file with default
settings.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

Create an audioDeviceWriter System object and specify the sample rate to match that
of the audio file reader.

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

Calculate the latency due to your device buffer, in seconds.

bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate

bufferLatency =

 0.0464

Set the SamplesPerFrame property of your dsp.AudioFileReader System object to
256. Calculate the buffer latency in seconds.

3-35

3 System objects in Audio System Toolbox

fileReader.SamplesPerFrame = 256;

bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate

bufferLatency =

 0.0116

Determine and Decrease Underrun

Underrun refers to output signal silence, which occurs when the audio stream loop does
not keep pace with the output device. Determine the underrun of an audio stream loop,
add artificial computational load to the audio stream loop, and then modify properties of
your audioDeviceWriter System object™ to decrease underrun. Your results depend
on your computer.

Create a dsp.AudioFileReader System object, and specify the file to read. Use the
audioinfo function to return a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

fileInfo = audioinfo('speech_dft.mp3');

Create an audioDeviceWriter System object. Use the SampleRate of the file reader
as the SampleRate of the device writer. Call setup to reduce the computational load of
initialization in an audio stream loop.

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

setup(deviceWriter,...

 zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels));

Run your audio stream loop with input from file and output to device. Print the total
samples underrun and the underrun in seconds.

totalUnderrun = 0;

while ~isDone(fileReader)

 input = fileReader();

 numUnderrun = deviceWriter(input);

 totalUnderrun = totalUnderrun + numUnderrun;

end

fprintf('Total samples underrun: %d.\n',...

 totalUnderrun);

fprintf('Total seconds underrun: %d.\n',...

 double(totalUnderrun)/double(deviceWriter.SampleRate));

3-36

 audioDeviceWriter System object

Total samples underrun: 0.

Total seconds underrun: 0.

Release your dsp.AudioFileReader and audioDeviceWriter System objects and set
your counter variable to zero.

release(fileReader);

release(deviceWriter);

totalUnderrun = 0;

Use a pause to mimic an algorithm that takes 0.075 seconds to process. The pause causes
the audio stream loop to go slower than the device, which results in periods of silence in
the output audio signal.

while ~isDone(fileReader)

 input = fileReader();

 numUnderrun = deviceWriter(input);

 totalUnderrun = totalUnderrun + numUnderrun;

 pause(0.075)

end

fprintf('Total samples underrun: %d.\n',...

 totalUnderrun);

fprintf('Total seconds underrun: %d.\n',...

 double(totalUnderrun)/double(deviceWriter.SampleRate));

Total samples underrun: 70656.

Total seconds underrun: 3.204354e+00.

Release your audioDeviceReader and dsp.AudioFileWriter and set the counter
variable to zero.

release(fileReader);

release(deviceWriter);

totalUnderrun = 0;

Set the frame size of your audio stream loop to 2048. Because the
SupportVariableSizeInput property of your audioDeviceWriter System object is
set to false, the buffer size of your audio device is the same size as the input frame size.
Increasing your device buffer size decreases underrun.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

fileReader.SamplesPerFrame = 2048;

fileInfo = audioinfo('speech_dft.mp3');

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

3-37

3 System objects in Audio System Toolbox

setup(deviceWriter,...

 zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels));

Calculate the total underrun.

while ~isDone(fileReader)

 input = fileReader();

 numUnderrun = deviceWriter(input);

 totalUnderrun = totalUnderrun + numUnderrun;

 pause(0.075)

end

fprintf('Total samples underrun: %d.\n',...

 totalUnderrun);

fprintf('Total seconds underrun: %d.\n',...

 double(totalUnderrun)/double(deviceWriter.SampleRate));

Total samples underrun: 0.

Total seconds underrun: 0.

The increased frame size reduces the total underrun of your audio stream loop. However,
increasing the frame size also increases latency. Other approaches to reduce underrun
include:

• Increase the buffer size independent of input frame size. To increase buffer size
independent of input frame size, you must first set SupportVariableSizeInput to
true. This approach also increases latency.

• Decrease the sample rate. Decreasing the sample rate reduces both latency and
underrun at the cost of signal resolution.

• Choose an optimal driver and device for your system.

Specify Channel Mapping for audioDeviceWriter

Specify non-default channel mapping for an audioDeviceWriter System object™. This
example is hardware specific. It assumes that your computer has a default audio output
device with two available channels.

Create an audioDeviceWriter System object™ with default settings.

deviceWriter = audioDeviceWriter;

By default, the audioDeviceWriter System object writes the max number of channels
available, corresponding to the columns of the input matrix. Use info to get the max
number of channels of your device.

3-38

 audioDeviceWriter System object

info(deviceWriter)

ans =

 struct with fields:

 Driver: 'DirectSound'

 DeviceName: 'Primary Sound Driver'

 MaximumOutputChannels: 2

If deviceWriter is called with one column of data, two channels are written to your
audio output device. Both channels correspond to the one column of data.

Use the audioOscillator System object to output a tone to your audioDeviceWriter
System object. Your object, sineGenerator, returns a vector when called.

sineGenerator = audioOscillator;

Write the sine tone to your audio device. If you are using headphones, you can hear the
tone from both channels.

count = 0;

while count < 500

 sine = sineGenerator();

 deviceWriter(sine);

 count = count + 1;

end

If your audioDeviceWriter System object is called with two columns of data, two
channels are written to your audio output device. The first column corresponds to
channel 1 of your audio output device, and the second column corresponds to channel 2 of
your audio output device.

Write a two-column matrix to your audio output device. Column one corresponds to the
sine tone and column two corresponds to a static signal. If you are using headphones, you
can hear the tone from one speaker and the static from the other speaker.

count = 0;

while count < 500

 sine = sineGenerator();

 static = randn(length(sine),1);

 deviceWriter([sine,static]);

3-39

3 System objects in Audio System Toolbox

 count = count + 1;

end

Specify alternative mappings between channels of your device and columns of the output
matrix by indicating the output channel number at an index corresponding to the input
column. Set ChannelMappingSource to 'Property'. Indicate that the first column of
your input data writes to channel 2 of your output device, and that the second column
of your input data writes to channel 1 of your output device. To modify the channel
mapping, you must first unlock the audioDeviceReader System object.

release(deviceWriter);

deviceWriter.ChannelMappingSource = 'Property';

deviceWriter.ChannelMapping = [2,1];

Play your audio signals with reversed mapping. If you are using headphones, notice that
the tone and static have switched speakers.

count = 0;

while count < 500

 sine = sineGenerator();

 static = randn(length(sine),1);

 deviceWriter([sine,static]);

 count = count + 1;

end

More About

Audio Device Writer System Interaction

Properties of the audio device writer specify the driver, the device, and device attributes
such as sample rate, bit depth, and buffer size.

3-40

 audioDeviceWriter System object

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the
audio device writer data flow.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library

files (.dll files) included with MATLAB. Use the packNGo function to package the
code generated from this object and all the relevant files in a compressed zip file.
Using this zip file, you can relocate, unpack, and rebuild your project in another
development environment where MATLAB is not installed. For more details, see .

See Also

See Also

Blocks
Audio Device Writer

System Objects
audioDeviceReader | audioPlayerRecorder | dsp.AudioFileWriter | dsp.AudioFileReader

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”
“Audio I/O: Buffering, Latency, and Throughput”
Measure Audio Latency
“Real-Time Audio in MATLAB”

Introduced in R2016a

3-41

3 System objects in Audio System Toolbox

getAudioDevices
System object: audioDeviceWriter

List available audio input devices

Syntax

devices = getAudioDevices(aDW)

Description

devices = getAudioDevices(aDW) returns a cell array listing available audio output
devices. The list of available output devices depends on the specified Driver property of
your audioDeviceWriter object.

Introduced in R2016a

3-42

 info

info
System object: audioDeviceWriter

Get information about selected device

Syntax

aDWInfo = info(aDW)

Description

aDWInfo = info(aDW) returns a structure containing information about your
audioDeviceWriter System object. The structure contains information about the
driver, device, and maximum number of input channels for your audioDeviceWriter
System object.

Introduced in R2016a

3-43

3 System objects in Audio System Toolbox

play
System object: audioDeviceWriter

Stream audio data to output device

Syntax

numUnderrun = play(aDW,x)

Description

numUnderrun = play(aDW,x) writes one frame of audio samples, x, to the audio
output device specified by the audio device writer System object, aDW. The number of
samples underrun since the last call to play is returned.

If x is of data type 'double' or 'single', the audio device writer clips values outside
the range [–1, 1]. For other data types, the allowed input range is [min, max] of the
specified data type.

When you call the play method of an audioDeviceWriter System object, the
audio device specified by the Device property is locked. An audio device can be
locked by only one audioDeviceWriter at a time. Call the release method of the
audioDeviceWriter System object to release the audio device.

Note: The System object performs an internal initialization the first time you execute
play. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016a

3-44

 step

step

System object: audioDeviceWriter

Stream audio data to output device

Syntax

numUnderrun = step(aDW,x)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

numUnderrun = step(aDW,x) writes one frame of audio samples, x, to the audio
output device specified by the audio device writer System object, aDW. The number of
samples underrun since the last call to step is returned.

If x is of data type 'double' or 'single', the audio device writer clips values outside
the range [–1, 1]. For other data types, the allowed input range is [min, max] of the
specified data type.

When you call the step method of an audioDeviceWriter System object, the
audio device specified by the Device property is locked. An audio device can be
locked by only one audioDeviceWriter at a time. Call the release method of the
audioDeviceWriter System object to release the audio device.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

3-45

3 System objects in Audio System Toolbox

nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016a

3-46

 audioOscillator System object

audioOscillator System object

Generate sine, square, and sawtooth waveforms

Description

The audioOscillator System object generates tunable waveforms. Typical uses
include the generation of test signals for test benches, and the generation of control
signals for audio effects. Properties of the audioOscillator System object specify the
type of waveform generated.

To generate tunable waveforms:

1 Define and set up your audio oscillator. See “Construction” on page 3-47.
2 Call step to generate a waveform according to the properties of your

audioOscillator object. The object has internal memory suited to frame-based
processing.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

osc = audioOscillator creates an audio oscillator System object, osc, with default
property values.

osc = audioOscillator(signalTypeValue) sets the SignalType property to
signalTypeValue.

osc = audioOscillator(signalTypeValue, frequencyValue) sets the
Frequency property to frequencyValue.

osc = audioOscillator(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

3-47

3 System objects in Audio System Toolbox

Example: osc = audioOscillator('SignalType','sine','Frequency',8000,
'DCOffset',1) creates a System object, osc, which generates sine waveforms with
Frequency set to 8000 and DCOffset set to 1.

Properties

If a property is listed as tunable, then you can change its value even when the object is
locked.

SignalType — Type of generated waveform
'sine' (default) | 'square' | 'sawtooth'

Type of waveform generated by your audioOscillator object, specified as 'sine',
'square', or 'sawtooth'.

The waveforms are generated using the algorithms specified by the sin, square, and
sawtooth functions.

Tunable: No

Frequency — Frequency of generated waveform (Hz)
100 (default) | real scalar | vector of real scalars

Frequency of generated waveform in Hz, specified as a real scalar or vector of real scalars
greater than or equal to 0.

• For sine waveforms, specify Frequency as a scalar or as a vector of length NumTones.
• For square waveforms, specify Frequency as a scalar.
• For sawtooth waveforms, specify Frequency as a scalar.

Tunable: Yes

Amplitude — Amplitude of generated waveform
1 (default) | real scalar | vector of real scalars

Amplitude of generated waveform, specified as a real scalar or vector of real scalars
greater than or equal to 0.

• For sine waveforms, specify Amplitude as a vector of length NumTones.
• For square waveforms, specify Amplitude as a scalar.

3-48

 audioOscillator System object

• For sawtooth waveforms, specify Amplitude as a scalar.

The generated waveform is multiplied by the value specified by Amplitude at the
output, before DC offset is applied.

Tunable: Yes

PhaseOffset — Normalized phase offset of generated waveform
0 (default) | real scalar | vector of real scalars

Normalized phase offset of generated waveform, specified as a real scalar or vector of real
scalars with values in the range 0 to 1. The range is a normalized 2π radians interval.

• For sine waveforms, specify PhaseOffset as a vector of length NumTones.
• For square waveforms, specify PhaseOffset as a scalar.
• For sawtooth waveforms, specify PhaseOffset as a scalar.

Tunable: No

DCOffset — Value added to each element of generated waveform
0 (default) | real scalar | vector of real scalars

Value added to each element of generated waveform, specified as a real scalar or vector of
real scalars.

• For sine waveforms, specify DCOffset as a vector of length NumTones.
• For square waveforms, specify DCOffset as a scalar.
• For sawtooth waveforms, specify DCOffset as a scalar.

Tunable: Yes

NumTones — Number of pure sine waveform tones
1 (default) | positive integer

Number of pure sine waveform tones summed and then generated by the audio oscillator,
specified as a positive integer. This property applies when you set the SignalType
property to 'sine'.

Individual tones are generated based on values specified by Frequency, Amplitude,
PhaseOffset, and DCOffset.

3-49

3 System objects in Audio System Toolbox

Tunable: No

DutyCycle — Square waveform duty cycle
0.5 (default) | scalar in the range 0 to 1

Square waveform duty cycle, specified as a scalar in the range 0 to 1. This property
applies when you set the SignalType property to 'square'.

Square waveform duty cycle is the percentage of one period in which the waveform is
above the median amplitude. A DutyCycle of 1 or 0 is equivalent to a DC offset.

Tunable: Yes

Width — Sawtooth width
1 (default) | real positive scalar

Sawtooth width, specified as a scalar in the range 0 to 1. This property applies when you
set the SignalType property to 'sawtooth'.

Sawtooth width determines the point in a sawtooth waveform period at which the
maximum occurs.

Tunable: Yes

SamplesPerFrame — Number of samples per frame
512 (default) | positive integer

Number of samples per frame, specified as a positive integer in the range 1 to 192,000.

This property determines the vector length that the step method of your
audioOscillator object outputs.

Tunable: Yes

SampleRate — Sample rate of generated waveform (Hz)
44100 (default) | positive scalar

Sample rate of generated waveform in Hz, specified as a positive scalar greater than
twice the value specified by Frequency.

Tunable: Yes

3-50

 audioOscillator System object

OutputDataType — Data type of generated waveform
'double' (default) | 'single'

Data type of generated waveform, specify as 'double' or 'single'.

Tunable: No

Methods

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

getMIDIConnections Get MIDI connection information
reset Reset internal states of System object
step Generate tunable waveforms

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Generate Variable-Frequency Sine Wave

Use the audioOscillator System object™ to generate a variable-frequency sine wave.

Create an audio oscillator to generate a sine wave. Use the default settings.

3-51

3 System objects in Audio System Toolbox

osc = audioOscillator;

Create a time scope to visualize the variable-frequency sine wave generated by the audio
oscillator.

scope = dsp.TimeScope(...

 'SampleRate',osc.SampleRate,...

 'TimeSpan',0.1,...

 'YLimits',[-1.5,1.5],...

 'TimeSpanOverrunAction', 'Scroll', ...

 'ShowGrid',true,...

 'Title','Variable-Frequency Sine Wave');

Place the audio oscillator in an audio stream loop. Increase the frequency of your
sinewave in 50 Hz increments.

counter = 0;

while (counter < 1e4)

 counter = counter + 1;

 sineWave = osc();

 scope(sineWave);

 if mod(counter,1000)==0

 osc.Frequency = osc.Frequency + 50;

 end

end

3-52

 audioOscillator System object

Create a Melody by Tuning Oscillation Frequency

Tune the frequency of an audio oscillator at regularly spaced intervals to create a melody.
Play the melody to your audio output device.

Create a structure to hold the frequency values of notes in a melody.

notes = struct('C4',261.63,'E4',329.63,'G4sharp',415.30,'A4',440,'B4',493.88, ...

3-53

3 System objects in Audio System Toolbox

 'C5',523.25,'D5',587.25,'D5sharp',622.25,'E5',659.25,'Silence',0);

Create an audio oscillator and audio device writer System objects™. Use the default
settings.

osc = audioOscillator;

aDW = audioDeviceWriter;

Create a vector with the initial melody of Fur Elise.

melody = [notes.Silence notes.Silence,...

 notes.E5 notes.D5sharp notes.E5 notes.D5sharp notes.E5 notes.B4 ...

 notes.D5 notes.C5 notes.A4 notes.A4 notes.Silence ...

 notes.C4 notes.E4 notes.A4 notes.B4 notes.B4 notes.Silence ...

 notes.E4 notes.G4sharp notes.B4 notes.C5 notes.C5 notes.Silence];

Specify the note duration in seconds. In an audio stream loop, call your audio oscillator
and write the sound to your audio device. Update the frequency of the audio oscillator in
noteDuration time steps to follow the melody. As a best practice, release your objects
once complete.

noteDuration = 0.3;

i = 1;

tic

while i < numel(melody)

 tone = osc();

 aDW(tone);

 if toc >= noteDuration

 i = i + 1;

 osc.Frequency = melody(i);

 tic

 end

end

release(osc);

release(aDW);

Control Cutoff Frequency of Lowpass Filter

Create a low-frequency oscillator (LFO) lowpass filter, using the audioOscillator as a
control signal.

3-54

 audioOscillator System object

Create dsp.AudioFileReader and audioDeviceWriter objects to read from an audio
file and write to your audio device. Create a biquad filter object to apply lowpass filtering
to your audio signal.

fileReader = dsp.AudioFileReader('Filename','Engine-16-44p1-stereo-20sec.wav');

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

lowpassFilter = dsp.BiquadFilter(...

 'SOSMatrixSource','Input port', ...

 'ScaleValuesInputPort',false);

Create an audio oscillator object. Your audio oscillator controls the cutoff frequency of the
lowpass filter in an audio stream loop.

osc = audioOscillator('SignalType','sawtooth', ...

 'DCOffset',0.05, ...

 'Amplitude',0.03, ...

 'SamplesPerFrame',fileReader.SamplesPerFrame, ...

 'SampleRate',fileReader.SampleRate, ...

 'Frequency',5);

In a loop, filter the audio signal through the lowpass filter. Write the output signal to
your audio device.

while ~isDone(fileReader)

 audioIn = fileReader();

 ctrlSignal = osc();

 [B,A] = designVarSlopeFilter(48,ctrlSignal(end));

 audioOut = lowpassFilter(audioIn,B,A);

 deviceWriter(audioOut);

end

As a best practice, release objects once complete.

release(osc)

release(fileReader)

release(deviceWriter)

3-55

3 System objects in Audio System Toolbox

For a more complete implementation of an LFO Filter, see
audiopluginexample.LFOFilter in the “Audio Plugin Example Gallery”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also

See Also

System Objects
wavetableSynthesizer

Introduced in R2016a

3-56

 configureMIDI

configureMIDI
System object: audioOscillator

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(osc)

configureMIDI(osc,propName)

configureMIDI(osc,propName,controlNumber)

configureMIDI(osc,propName,controlNumber,'DeviceName',deviceName)

Description

configureMIDI(osc) starts a MIDI configuration user interface (UI). Use the UI
to synchronize tunable properties of the audio oscillator System object, osc, to MIDI
controls of your choice.

configureMIDI(osc,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(osc,propName,controlNumber) makes the property respond to the
MIDI control specified by controlNumber.

configureMIDI(osc,propName,controlNumber,'DeviceName',deviceName)

makes the property respond to the MIDI control specified by controlNumber on the
device specified by deviceName.

Each tunable property of the audioOscillator System object maps to MIDI controls
with a specified range.

Property Range Mapping

Frequency 0.1 Hz to 20 kHz log
Amplitude 0 to 10 linear
DCOffset –10 to 10 linear

3-57

3 System objects in Audio System Toolbox

Property Range Mapping

DutyCycle (available when
you set SignalType to
'square')

0 to 1 linear

Width (available when
you set SignalType to
'sawtooth')

0 to 1 linear

Introduced in R2016a

3-58

 createAudioPluginClass

createAudioPluginClass
System object: audioOscillator

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(osc)

createAudioPluginClass(osc,pluginName)

Description

createAudioPluginClass(osc) creates a System object source plugin that
implements the functionality of the audioOscillator System object, osc. The name
of the created class is the audioOscillator System object variable name followed by
'Plugin', for example, oscPlugin. By default, the created class outputs a one-channel
(column) matrix.

createAudioPluginClass(osc,pluginName) specifies the name of your created
System object source plugin class.

Example: createAudioPluginClass(osc,'myOscillator') creates a System
object source plugin with class name myOscillator.

Each tunable property of the audioOscillator System object maps to a plugin
parameter with a default range.

Property Plugin Parameter Range Mapping

Frequency 0.1 Hz to 20 kHz log
Amplitude 0 to 10 linear
DCOffset –10 to 10 linear
DutyCycle (available when
you set SignalType to
'square')

0 to 1 linear

3-59

3 System objects in Audio System Toolbox

Property Plugin Parameter Range Mapping

Width (available when
you set SignalType to
'sawtooth')

0 to 1 linear

Introduced in R2016a

3-60

 disconnectMIDI

disconnectMIDI
System object: audioOscillator

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(osc)

Description

disconnectMIDI(osc) disconnects MIDI controls from your audio oscillator, osc. Only
those MIDI connections established using configureMIDI are disconnected.

Introduced in R2016a

3-61

3 System objects in Audio System Toolbox

getMIDIConnections
System object: audioOscillator

Get MIDI connection information

Syntax

connectionInfo = getMIDIConnections(osc)

Description

connectionInfo = getMIDIConnections(osc) returns a structure,
connectionInfo, containing information about the MIDI connections for your audio
oscillator, osc. Only those MIDI connections established using configureMIDI are
returned. The connectionInfo structure contains a substructure for each tunable
property of osc that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

3-62

 reset

reset
System object: audioOscillator

Reset internal states of System object

Syntax

reset(osc)

Description

reset(osc) resets internal states of the audio oscillator, osc, to their initial values.

Introduced in R2016a

3-63

3 System objects in Audio System Toolbox

step
System object: audioOscillator

Generate tunable waveforms

Syntax

y = step(osc)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj) and y = obj() perform equivalent operations.

y = step(osc) generates a waveform output, y. The type of waveform is specified by
the algorithm and properties of the System object, osc.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

Introduced in R2016a

3-64

 crossoverFilter System object

crossoverFilter System object

Audio crossover filter

Description

The crossoverFilter System object implements an audio crossover filter, which is
used to split an audio signal into two or more frequency bands. Crossover filters are
multiband filters whose overall magnitude frequency response is flat.

To implement an audio crossover filter:

1 Define and set up your crossover filter. See “Construction” on page 3-65.
2 Call step to implement a crossover filter on each channel of the input signal

according to the properties of your crossoverFilter object. The input must be
a real-valued, double-precision or single-precision matrix. The crossoverFilter
object treats each column of the input as an independent channel.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

crossFilt = crossoverFilter creates a System object, crossFilt, that
implements an audio crossover filter.

crossFilt = crossoverFilter(numCrossoversValue) sets the NumCrossovers
property to numCrossoversValue.

crossFilt = crossoverFilter(numCrossoversValue,

crossoverFrequenciesValue) sets the CrossoverFrequencies property to
crossoverFrequenciesValue.

3-65

3 System objects in Audio System Toolbox

crossFilt = crossoverFilter(numCrossoversValue,

crossoverFrequenciesValue,crossoverSlopesValue) sets the
CrossoverSlopes property to crossoverSlopesValue.

crossFilt = crossoverFilter(numCrossoversValue,

crossoverFrequenciesValue,crossoverSlopesValue,Fs) sets the SampleRate
property to Fs.

crossFilt = crossoverFilter(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.

Example: crossFilt = crossoverFilter(2,'CrossoverFrequencies',
[100,800],'CrossoverSlopes',[6,48]) creates a System object, crossFilt, with
the NumCrossovers property set to 2, the CrossoverFrequencies property set to
[100,800], and the CrossoverSlopes property set to [6,48].

To visualize the crossover bands of the crossFilt System object, use the visualize
method of the object.

visualize(crossFilt)

3-66

 crossoverFilter System object

Properties

If a property is listed as tunable, then you can change its value even when the object is
locked.

NumCrossovers — Number of magnitude response band crossings
1 (default) | 2 | 3 | 4

Number of magnitude response band crossings, specified as a scalar integer in the range
1 to 4.

The number of bands output when crossoverFilter is called by step is one more than
the NumCrossovers value.

Number of magnitude response band
crossings

Number of bands output

1 two-band
2 three-band
3 four-band
4 five-band

Tunable: No

CrossoverFrequencies — Crossover frequencies (Hz)
100 (default) | scalar | vector

Crossover frequencies in Hz, specified as a scalar or vector of real values of length
NumCrossovers.

Crossover frequencies are the intersections of magnitude response bands of the individual
two-band crossover filters used in the multiband crossover filter.

Tunable: Yes

CrossoverSlopes — Crossover slopes (dB/octave)
12 (default) | scalar | vector

Crossover slopes in dB/octave, specified as a scalar or vector of real values in the range
[6:6:48]. If a crossover slope is not specified inside the range, it is rounded to the
nearest allowed value.

3-67

3 System objects in Audio System Toolbox

• If CrossoverSlopes is a scalar, all two-band component crossovers slopes take that
value.

• If CrossoverSlopes is a vector of length NumCrossovers, the respective two-band
component crossover slopes take those values.

Crossover slopes are the slopes of individual bands at the associated crossover frequency,
as specified in the two-band component crossover.

Tunable: Yes

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes

Methods

configureMIDI Configure MIDI connections between
System object and MIDI controller

cost Implementation cost of System object
createAudioPluginClass Create audio plugin class that implements

functionality of System object
disconnectMIDI Disconnect MIDI controls from System

object
getMIDIConnections Get MIDI connection information
reset Reset internal states of System object
step Implement audio crossover filter
visualize Visualize magnitude response of System

object

Common to All System Objects

clone Create System object with same property values

3-68

 crossoverFilter System object

Common to All System Objects

getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Pass Noise Signal Through Crossover Filter

Use the crossoverFilter System object™ to split Gaussian noise into three separate
frequency bands.

Create a 5 second noise signal that assumes a 12,000 Hz sample rate.

noise = randn(12000*5,1);

Create a crossoverFilter System object with 2 crossovers (3 bands), crossover
frequencies at 4 kHz and 8 kHz, a slope of 48 dB/octave, and a sample rate of 24 kHz.

crossFilt = crossoverFilter(...

 'NumCrossovers',2,...

 'CrossoverFrequencies',[4000,8000],...

 'CrossoverSlopes',48,...

 'SampleRate',24000);

Visualize the magnitude response of your crossover filter object.

visualize(crossFilt);

3-69

3 System objects in Audio System Toolbox

Call your crossover filter like a function with the noise signal as the argument.

[y1,y2,y3] = crossFilt(noise);

Visualize the results using a spectrogram.

figure('Position',[100,100,800,700]);

subplot(4,1,1)

 spectrogram(noise,120,100,6000,24000,'yaxis');

 title('Noise');

subplot(4,1,2)

 spectrogram(y1,120,100,6000,24000,'yaxis');

 title('y1');

subplot(4,1,3)

 spectrogram(y2,120,100,6000,24000,'yaxis');

3-70

 crossoverFilter System object

 title('y2');

subplot(4,1,4)

 spectrogram(y3,120,100,6000,24000,'yaxis');

 title('y3');

3-71

3 System objects in Audio System Toolbox

Split Audio Signal into Three Bands

Use the crossoverFilter System object™ to split an audio signal into three frequency
bands.

3-72

 crossoverFilter System object

Construct the audio file reader and audio device writer System objects. Use the sample
rate of the reader as the sample rate of the writer. Call setup to reduce the computation
load of initialization in an audio stream loop.

samplesPerFrame = 256;

fileReader = dsp.AudioFileReader(...

 'RockGuitar-16-44p1-stereo-72secs.wav',...

 'SamplesPerFrame',samplesPerFrame);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

setup(fileReader);

setup(deviceWriter,ones(samplesPerFrame,2));

Create a crossover filter System object with 2 crossovers (3 bands), crossover frequencies
at 500 Hz and 1 kHz, and a slope of 18 dB/octave. Use the sample rate of the reader as
the sample rate of the crossover filter.

crossFilt = crossoverFilter(...

 'NumCrossovers',2,...

 'CrossoverFrequencies',[500,1000],...

 'CrossoverSlopes',18,...

 'SampleRate',fileReader.SampleRate);

setup(crossFilt,ones(samplesPerFrame,2));

Visualize the bands of the crossover filter.

visualize(crossFilt);

3-73

3 System objects in Audio System Toolbox

Get the cost of the crossover filter.

cost(crossFilt)

ans =

 struct with fields:

 NumCoefficients: 48

 NumStates: 18

 MultiplicationsPerInputSample: 48

 AdditionsPerInputSample: 37

3-74

 crossoverFilter System object

Create a spectrum analyzer to visualize the effect of the crossover filter.

scope = dsp.SpectrumAnalyzer(...

 'SampleRate',fileReader.SampleRate,...

 'PlotAsTwoSidedSpectrum',false,...

 'FrequencyScale','Log',...

 'FrequencyResolutionMethod','WindowLength',...

 'WindowLength',samplesPerFrame,...

 'Title',...

 'Crossover Bands and Reconstructed Signal',...

 'ShowLegend',true,...

 'ChannelNames',{'Original Signal','Band 1',...

 'Band 2','Band 3','Sum'});

Play 10 seconds of the audio signal. Visualize the spectrum of the original audio, the
crossover bands, and the reconstructed signal (sum of bands).

setup(scope,ones(samplesPerFrame,5));

count = 0;

while count < (fileReader.SampleRate/samplesPerFrame)*10

 originalSignal = fileReader();

 [band1,band2,band3] = crossFilt(originalSignal);

 sumOfBands = band1 + band2 + band3;

 step(scope,...

 [originalSignal(:,1),...

 band1(:,1),...

 band2(:,1),...

 band3(:,1),...

 sumOfBands(:,1)]);

 deviceWriter(sumOfBands);

 count = count+1;

end

release(fileReader)

release(crossFilt)

release(scope)

release(deviceWriter)

3-75

3 System objects in Audio System Toolbox

Apply Split-Band De-Essing

De-essing is the process of diminishing sibilant sounds in an audio signal. Sibilance
refers to the s, z, and sh sounds in speech, which can be disproportionately emphasized
during recording. es sounds fall under the category of unvoiced speech with all
consonants, and have a higher frequency than voiced speech. In this example, you
apply split-band de-essing to a speech signal by separating the signal into high and
low frequencies, applying an expander to diminish the sibilant frequencies, and then
remixing the channels.

Create a dsp.AudioFileReader object and audioDeviceWriter object to read from
a sound file and write to an audio device. Listen to the unprocessed signal. Then release
the file reader and device writer.

3-76

 crossoverFilter System object

fileReader = dsp.AudioFileReader(...

 fullfile(matlabroot,'examples','audio','Sibilance.wav'));

deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)

 audioIn = fileReader();

 deviceWriter(audioIn);

end

release(deviceWriter)

release(fileReader)

Create an expander System object to de-ess the audio signal. Set the sample rate of the
expander to the sample rate of the audio file. Create a two-band crossover filter with a
crossover of 3000 Hz. Sibilance is usually found in this range. Set the crossover slope to
12. Plot the frequency response of the crossover filter to confirm your design visually.

dRExpander = expander(...

 'Threshold',-50, ...

 'AttackTime', 0.05, ...

 'ReleaseTime',0.05, ...

 'HoldTime',0.005, ...

 'SampleRate',fileReader.SampleRate);

crossFilt = crossoverFilter(...

 'NumCrossovers',1, ...

 'CrossoverFrequencies',3000, ...

 'CrossoverSlopes',12);

visualize(crossFilt)

3-77

3 System objects in Audio System Toolbox

Create a dsp.TimeScope object to visualize the original and processed audio signals.

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate, ...

 'TimeSpanOverrunAction','Scroll', ...

 'TimeSpan',4, ...

 'BufferLength',44100*8, ...

 'YLimits',[-1 1], ...

 'ShowGrid',true, ...

 'ShowLegend',true, ...

 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.

3-78

 crossoverFilter System object

2 Split the audio signal into two bands.
3 Apply dynamic range expansion to the upper band.
4 Remix the channels.
5 Write the processed audio signal to your audio device for listening.
6 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)

 audioIn = fileReader();

 [band1,band2] = crossFilt(audioIn);

 band2processed = dRExpander(band2);

 procAudio = band1 + band2processed;

 deviceWriter(procAudio);

 scope([audioIn procAudio]);

end

release(deviceWriter)

release(fileReader)

release(scope)

release(crossFilt)

release(dRExpander)

3-79

3 System objects in Audio System Toolbox

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most
pronounced in p, d, and g words. Plosives can be emphasized by the recording process
and are often displeasurable to hear. In this example, you minimize the plosives of a
speech signal by applying highpass filtering and low-band compression.

3-80

 crossoverFilter System object

Create a dsp.AudioFileReader System object™ and audioDeviceWriter System
object™ to read an audio signal from a file and write an audio signal to a device. Listen
to the unprocessed signal. Then release the file reader and device writer.

fileReader = dsp.AudioFileReader(...

 fullfile(matlabroot,'examples','audio','Plosives.wav'));

deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)

 audioIn = fileReader();

 deviceWriter(audioIn);

end

release(deviceWriter)

release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter System object to implement the highpass filter design. Create a
crossover filter with one crossover at 250 Hz. The crossover filter enables you to separate
the band of interest for processing. Create a dynamic range compressor to compress the
dynamic range of plosive sounds. To apply no make-up gain, set the MakeUpGainMode to
Property and use the default 0 dB MakeUpGain property value. Create a time scope to
visualize the processed and unprocessed audio signal.

[B,A] = designVarSlopeFilter(48,120/(44100/2),'hi');

biquadFilter = dsp.BiquadFilter(...

 'SOSMatrixSource','Input port', ...

 'ScaleValuesInputPort',false);

crossFilt = crossoverFilter(...

 'NumCrossovers',1, ...

 'CrossoverFrequencies',250, ...

 'CrossoverSlopes',48);

dRCompressor = compressor(...

 'Threshold',-35, ...

 'Ratio',10, ...

 'KneeWidth',20, ...

 'AttackTime',1e-4, ...

 'ReleaseTime',3e-1, ...

 'MakeUpGainMode','Property', ...

 'SampleRate',fileReader.SampleRate);

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate, ...

3-81

3 System objects in Audio System Toolbox

 'TimeSpan',3, ...

 'BufferLength',fileReader.SampleRate*3*2, ...

 'YLimits',[-1 1], ...

 'ShowGrid',true, ...

 'ShowLegend',true, ...

 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)

 audioIn = fileReader();

 audioIn = biquadFilter(audioIn,B,A);

 [band1,band2] = crossFilt(audioIn);

 band1compressed = dRCompressor(band1);

 audioOut = band1compressed + band2;

 deviceWriter(audioOut);

 scope([audioIn audioOut]);

end

release(deviceWriter)

release(fileReader)

release(scope)

release(crossFilt)

release(dRCompressor)

3-82

 crossoverFilter System object

Algorithms

The crossover System object is implemented as a binary tree of crossover pairs with
additional phase-compensating sections [1]. Odd-order crossovers are implemented

3-83

3 System objects in Audio System Toolbox

with Butterworth filters, while even-order crossovers are implemented with cascaded
Butterworth filters (Linkwitz-Riley filters).

Odd-Order Crossover Pair

Odd-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

LP and HP are Butterworth filters of order N, implemented as direct-form II transposed
second-order sections. The shared cutoff frequency used in their design corresponds to
the crossover of the resulting bands.

Even-Order Crossover Pair

Even-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

LP and HP are Butterworth filters of order N/2, where N is the order of the overall filter.
The filters are implemented as direct-form II transposed second-order sections.

For overall filters of orders 2 and 6, XHI is multiplied by –1 internally so that the
branches of your crossover pair are in-phase.

3-84

 crossoverFilter System object

Even-Order Three-Band Filter

Even-order three-band (two crossovers) filters are implemented as parallel
complementary highpass and lowpass filters organized in a tree structure.

The phase-compensating section is equivalent to an allpass filter.

The design of four-band and five-band filters (three and four crossovers) are extensions
of the pattern developed for even-order and odd-order crossovers and the tree structure
specified for three-band (two crossover) filters.

References

[1] D’Appolito, Joseph A. “Active Realization of Multiway All-Pass Crossover Systems”.
Journal of Audio Engineering Society. Vol. 35, Issue 4, pp. 239–245.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

3-85

3 System objects in Audio System Toolbox

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also

See Also

Blocks
Crossover Filter

System Objects
multibandParametricEQ

Introduced in R2016a

3-86

 configureMIDI

configureMIDI
System object: crossoverFilter

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(crossFilt)

configureMIDI(crossFilt,propName)

configureMIDI(crossFilt,propName,controlNumber)

configureMIDI(crossFilt,propName,controlNumber,'DeviceName',

deviceName)

Description

configureMIDI(crossFilt) starts a MIDI configuration user interface (UI). Use the
UI to synchronize tunable properties of the crossover filter System object, crossFilt, to
MIDI controls of your choice.

configureMIDI(crossFilt,propName) makes the System object property,
propName, respond to any control on the default MIDI device.

configureMIDI(crossFilt,propName,controlNumber) makes the property
respond to the MIDI control specified by controlNumber.

configureMIDI(crossFilt,propName,controlNumber,'DeviceName',

deviceName) makes the property respond to the MIDI control specified by
controlNumber on the device specified by deviceName.

Each tunable property of the crossoverFilter System object maps to MIDI controls
with a specified range.

Property Range Unit

CrossoverFrequencies 20 to 20,000 Hz
CrossoverSlopes 6 to 48 dB/octave

3-87

3 System objects in Audio System Toolbox

Introduced in R2016a

3-88

 cost

cost
System object: crossoverFilter

Implementation cost of System object

Syntax

C = cost(crossFilt)

Description

C = cost(crossFilt) returns a structure, C, whose fields contain information about
the computation cost of implementing the crossover filter, crossFilt.

Structure Field Description

NumCoefficients Number of filter coefficients (excluding
coefficients with values 0, 1, or –1)

NumStates Number of states
MultiplicationsPerInputSample Number of multiplications per input

sample
AdditionsPerInputSample Number of additions per input sample

Introduced in R2016a

3-89

3 System objects in Audio System Toolbox

createAudioPluginClass
System object: crossoverFilter

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(crossFilt)

createAudioPluginClass(crossFilt,pluginName)

Description

createAudioPluginClass(crossFilt) creates a System object plugin that
implements the functionality of the crossoverFilter System object, crossFilt. The
name of the created class is the crossoverFilter System object variable name followed
by 'Plugin', for example, crossFiltPlugin.

Note: If the object is locked, the number of input and output channels of the plugin is
equal to the number of channels of the object. Otherwise, the number of channels is equal
to 2.

createAudioPluginClass(crossFilt,pluginName) specifies the name of your
created System object plugin class.

Example: createAudioPluginClass(crossFilt,'xOverFilter') creates a
System object plugin with class name xOverFilter.

Each tunable property of the crossoverFilter System object maps to a plugin
parameter with a default range.

Property Plugin Parameter Range Unit

CrossoverFrequencies 20 to 20,000 Hz
CrossoverSlopes 6 to 48 dB/octave

3-90

 createAudioPluginClass

Introduced in R2016a

3-91

3 System objects in Audio System Toolbox

disconnectMIDI
System object: crossoverFilter

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(crossFilt)

Description

disconnectMIDI(crossFilt) disconnects MIDI controls from your crossover filter,
crossFilt. Only those MIDI connections established using configureMIDI are
disconnected.

Introduced in R2016a

3-92

 getMIDIConnections

getMIDIConnections
System object: crossoverFilter

Get MIDI connection information

Syntax

connectionInfo= getMIDIConnections(crossFilt)

Description

connectionInfo= getMIDIConnections(crossFilt) returns a structure,
connectionInfo, containing information about the MIDI connections for your crossover
filter, crossFilt. Only those MIDI connections established using configureMIDI
are returned. The connectionInfo structure contains a substructure for each tunable
property of crossFilt that has established MIDI connections. Each substructure
contains the control number, the device name of the corresponding MIDI control, and the
property mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

3-93

3 System objects in Audio System Toolbox

reset
System object: crossoverFilter

Reset internal states of System object

Syntax

reset(crossFilter)

Description

reset(crossFilter) resets internal states of the crossover filter, crossFilt, to their
initial values.

Introduced in R2016a

3-94

 step

step
System object: crossoverFilter

Implement audio crossover filter

Syntax

[band1,band2,...,bandN] = step(crossFilt,x)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[band1,band2,...,bandN] = step(crossFilt,x) applies a crossover filter on the
input, x, and returns the filtered output bands, [band1,band2,...,bandN], where N =
NumCrossovers + 1.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016a

3-95

3 System objects in Audio System Toolbox

visualize
System object: crossoverFilter

Visualize magnitude response of System object

Syntax

visualize(crossFilt)

visualize(crossFilt,N)

Description

visualize(crossFilt) plots the magnitude response of each individual filter band.
The plot is updated automatically when properties of the object change.

visualize(crossFilt,N) specifies an N-point FFT used to calculate the magnitude
response. The default is 2048.

Introduced in R2016a

3-96

 compressor System object

compressor System object

Dynamic range compressor

Description

The compressor System object performs dynamic range compression independently
across each input channel. Dynamic range compression attenuates the volume of loud
sounds that cross a given threshold. It uses specified attack and release times to achieve
a smooth applied gain curve. Properties of the compressor System object specify the
type of dynamic range compression.

To perform dynamic range compression on your input:

1 Define and set up your dynamic range compressor. See “Construction” on page
3-97.

2 Call step to perform dynamic range compression on each channel of the input signal
according to the properties of your compressor object. The input must be a real-
valued, double-precision or single-precision matrix. The compressor object treats
each column of the input as an independent channel.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

dRC = compressor creates a System object, dRC, that performs dynamic range
compression independently across each input channel over time.

dRC = compressor(thresholdValue) sets the Threshold property to
thresholdValue.

dRC = compressor(thresholdValue, ratioValue) sets the Ratio property to
ratioValue.

3-97

3 System objects in Audio System Toolbox

dRC = compressor(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Example: dRC = compressor('AttackTime',0.01,'SampleRate',16000) creates
a System object, dRC, with the AttackTime property set to 0.01 and the SampleRate
property set to 16000.

Properties

If a property is listed as tunable, then you can change its value even when the object is
locked.

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level above which gain is applied to the input signal.

Tunable: Yes

Ratio — Compression ratio
5 (default) | real scalar

Compression ratio, specified as a real scalar greater than or equal to 1.

Compression ratio is the input/output ratio for signals that overshoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB >

thresholdValue, the compression ratio is defined as
R

x n T

y n T
=

-

-

([])

([]) .

• R is the compression ratio.
• x[n] is the input signal in dB.
• y[n] is the output signal in dB.
• T is the threshold in dB.

Tunable: Yes

3-98

 compressor System object

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

Knee width is the transition area in the compression characteristic.

For soft knee characteristics, the transition area is defined by the relation

y x
R

x T
W

W
= +

-Ê
ËÁ

ˆ
¯̃

¥ - +Ê
ËÁ

ˆ
¯̃

¥()

1
1

2

2

2

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• R is the compression ratio.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the compressor gain to rise from 10% to 90% of its final
value when the input goes above the threshold.

Tunable: Yes

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the compressor gain to drop from 90% to 10% of its final
value when the input goes below the threshold.

3-99

3 System objects in Audio System Toolbox

Tunable: Yes

MakeUpGainMode — Make-up gain mode
'Auto' (default) | 'Property'

Make-up gain mode, specified as 'Auto' or 'Property'.

• 'Auto' — Make-up gain is applied at the output of the dynamic range compressor
such that a steady-state 0 dB input has a 0 dB output.

• 'Property' — Make-up gain is set to the value specified in the MakeUpGain
property.

MakeUpGain — Make-up gain (dB)
0 (default) | real scalar

Make-up gain in dB, specified as a real scalar.

Make-up gain compensates for gain lost during compression. It is applied at the
output of the dynamic range compressor. This property is available when you set
MakeUpGainMode to 'Property'.

Tunable: Yes

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes

Methods

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

3-100

 compressor System object

getMIDIConnections Get MIDI connection information
reset Reset internal states of System object
step Perform dynamic range compression
visualize Visualize static compression characteristics

of System object

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Compress Audio Signal

Use dynamic range compression to attenuate the volume of loud sounds.

Set up the audio file reader and audio device writer System objects.

frameLength = 1024;

fileReader = dsp.AudioFileReader(...

 'Filename','RockDrums-44p1-stereo-11secs.mp3',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

Set up the compressor to have a threshold of -15 dB, a ratio of 7, and a knee width of 5.
Use the sample rate of your audio file reader.

dRC = compressor(-15,7,...

 'KneeWidth',5,...

 'SampleRate',fileReader.SampleRate);

Visualize the compression static characteristic.

visualize(dRC)

3-101

3 System objects in Audio System Toolbox

Set up the scope to visualize the original audio signal, the compressed audio signal, and
the applied compressor gain.

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate,...

 'TimeSpan',1,...

 'BufferLength',44100*4,...

 'YLimits',[-1,1],...

 'TimeSpanOverrunAction','Scroll',...

 'ShowGrid',true,...

 'LayoutDimensions',[2,1],...

3-102

 compressor System object

 'NumInputPorts',2,...

 'Title',...

 ['Original vs. Compressed Audio (top)'...

 ' and Compressor Gain in dB (bottom)']);

scope.ActiveDisplay = 2;

scope.YLimits = [-4,0];

scope.YLabel = 'Gain (dB)';

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)

 x = fileReader();

 [y,g] = dRC(x);

 deviceWriter(y);

 scope([x(:,1),y(:,1)],g(:,1))

end

release(dRC)

release(deviceWriter)

release(scope)

3-103

3 System objects in Audio System Toolbox

Compare Dynamic Range Limiter and Compressor

A dynamic range limiter is a special type of dynamic range compressor. In limiters, the
level above an operational threshold is hard limited. In the simplest implementation of
a limiter, the effect is equivalent to audio clipping. In compressors, the level above an
operational threshold is lowered using a specified compression ratio. Using a compression
ratio results in a smoother processed signal.

3-104

 compressor System object

Compare Limiter and Compressor Applied to Sinusoid

Create a limiter System object™ and a compressor System object. Set the
AttackTime and ReleaseTime properties of both objects to zero. Create an
audioOscillator System object to generate a sinusoid with Frequency set to 5 and
Amplitude set to 0.1.

dRL = limiter('AttackTime',0,'ReleaseTime',0);

dRC = compressor('AttackTime',0,'ReleaseTime',0);

osc = audioOscillator('Frequency',5,'Amplitude',0.1);

Create a time scope to visualize the generated sinusoid and the processed sinusoid.

scope = dsp.TimeScope(...

 'SampleRate',osc.SampleRate, ...

 'TimeSpan',2, ...

 'BufferLength',osc.SampleRate*4, ...

 'YLimits',[-1 1], ...

 'TimeSpanOverrunAction','Scroll', ...

 'ShowGrid',true, ...

 'LayoutDimensions',[2 1], ...

 'NumInputPorts',2, ...

 'Title', ...

 'Original Signal vs. Limited Signal (top) and Compressed Signal (bottom)');

In an audio stream loop, visualize the original sinusoid and the sinusoid processed by a
limiter and a compressor. Increment the amplitude of the original sinusoid to illustrate
the effect.

while osc.Amplitude < 0.75

 x = osc();

 xLimited = dRL(x);

 xCompressed = dRC(x);

 scope([x xLimited],[x xCompressed]);

 osc.Amplitude = osc.Amplitude + 0.0002;

end

release(scope)

release(dRL)

release(dRC)

release(osc)

3-105

3 System objects in Audio System Toolbox

Compare Limiter and Compressor Applied to Audio Signal

Compare the effect of dynamic range limiters and compressors on a drum track. Create a
dsp.AudioFileReader object and audioDeviceWriter object to read audio from a file
and write to your audio output device. To emphasize the effect of dynamic range control,
set the operational threshold of the limiter and compressor to -20 dB.

dRL.Threshold = -20;

3-106

 compressor System object

dRC.Threshold = -20;

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Read successive frames from an audio file in a loop. Listen to and compare the effect of
dynamic range limiting and dynamic range compression on an audio signal.

numFrames = 300;

fprintf('Now playing original signal...\n')

for i = 1:numFrames

 x = fileReader();

 deviceWriter(x);

end

reset(fileReader);

fprintf('Now playing limited signal...\n')

for i = 1:numFrames

 x = fileReader();

 xLimited = dRL(x);

 deviceWriter(xLimited);

end

reset(fileReader);

fprintf('Now playing compressed signal...\n')

for i = 1:numFrames

 x = fileReader();

 xCompressed = dRC(x);

 deviceWriter(xCompressed);

end

release(fileReader)

release(deviceWriter)

release(dRC)

release(dRL)

Now playing original signal...

Now playing limited signal...

Now playing compressed signal...

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most
pronounced in p, d, and g words. Plosives can be emphasized by the recording process

3-107

3 System objects in Audio System Toolbox

and are often displeasurable to hear. In this example, you minimize the plosives of a
speech signal by applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader System object™ and audioDeviceWriter System
object™ to read an audio signal from a file and write an audio signal to a device. Listen
to the unprocessed signal. Then release the file reader and device writer.

fileReader = dsp.AudioFileReader(...

 fullfile(matlabroot,'examples','audio','Plosives.wav'));

deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)

 audioIn = fileReader();

 deviceWriter(audioIn);

end

release(deviceWriter)

release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter System object to implement the highpass filter design. Create a
crossover filter with one crossover at 250 Hz. The crossover filter enables you to separate
the band of interest for processing. Create a dynamic range compressor to compress the
dynamic range of plosive sounds. To apply no make-up gain, set the MakeUpGainMode to
Property and use the default 0 dB MakeUpGain property value. Create a time scope to
visualize the processed and unprocessed audio signal.

[B,A] = designVarSlopeFilter(48,120/(44100/2),'hi');

biquadFilter = dsp.BiquadFilter(...

 'SOSMatrixSource','Input port', ...

 'ScaleValuesInputPort',false);

crossFilt = crossoverFilter(...

 'NumCrossovers',1, ...

 'CrossoverFrequencies',250, ...

 'CrossoverSlopes',48);

dRCompressor = compressor(...

 'Threshold',-35, ...

 'Ratio',10, ...

 'KneeWidth',20, ...

 'AttackTime',1e-4, ...

 'ReleaseTime',3e-1, ...

 'MakeUpGainMode','Property', ...

 'SampleRate',fileReader.SampleRate);

3-108

 compressor System object

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate, ...

 'TimeSpan',3, ...

 'BufferLength',fileReader.SampleRate*3*2, ...

 'YLimits',[-1 1], ...

 'ShowGrid',true, ...

 'ShowLegend',true, ...

 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)

 audioIn = fileReader();

 audioIn = biquadFilter(audioIn,B,A);

 [band1,band2] = crossFilt(audioIn);

 band1compressed = dRCompressor(band1);

 audioOut = band1compressed + band2;

 deviceWriter(audioOut);

 scope([audioIn audioOut]);

end

release(deviceWriter)

release(fileReader)

release(scope)

release(crossFilt)

3-109

3 System objects in Audio System Toolbox

release(dRCompressor)

Algorithms

The compressor System object processes a signal frame by frame and element by
element.

3-110

 compressor System object

1 The N-point signal, x[n], is converted to decibels:

x n x n
dB

[] log []= ¥20 10

2 xdB[n] passes through the gain computer. The gain computer uses the static
characteristic properties of the dynamic range compressor to attenuate gain that is
above the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

x x

x x T
W

x
R

x T
W

W
T

sc dB

dB dB

dB

dB

() =

< -Ê
ËÁ

ˆ
¯̃

+
-Ê

Ë
Á

ˆ
¯
˜ - +Ê
Ë
Á

ˆ
¯
˜

2

1
1

2

2

2

--Ê
ËÁ

ˆ
¯̃

£ £ +Ê
ËÁ

ˆ
¯̃

+
-()

> +Ê
ËÁ

ˆ
¯̃

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô

W
x T

W

T
x T

R
x T

W

dB

dB

dB

2 2

2

ÔÔ
Ô
Ô
Ô

,

where T is the threshold, R is the ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

3-111

3 System objects in Audio System Toolbox

x x

x x T

T
x T

R
x T

sc dB

dB dB

dB

dB

() =

<

+
-()

≥

Ï

Ì
Ô

ÓÔ

3 The computed gain, gc[n], is calculated as

g n x n x nc sc dB[] [] [].= -

4 gc[n] is smoothed using specified attack and release time properties:

g n
g n g n g n g n

g n gs
A s A c c s

R s R

[]
[] () [], [] []

[] ()
=

- + - > -

- + -

a a

a a

1 1 1

1 1 cc c sn g n g n[], [] []£ -

Ï
Ì
Ó 1

The attack time coefficient, αA , is calculated as

a A
AFs T

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

The release time coefficient, αR , is calculated as

a
R

RFs T
= -

¥
Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

TA is the attack time period, specified by the AttackTime property. TR is the release
time period, specified by the ReleaseTime property. Fs is the input sampling rate,
specified by the SampleRate property.

5 If MakeUpGainMode is set to the default 'Auto', the make-up gain is calculated as
the negative of the computed gain for a 0 dB input,

M x x
sc dB

= - =().0

Given a steady-state input of 0 dB, this configuration achieves a steady-state output
of 0 dB. The make-up gain is determined by the Threshold, Ratio, and KneeWidth
properties. It does not depend on the input signal.

6 The make-up gain, M, is added to the smoothed gain, gs[n]:

3-112

 compressor System object

g n g n Mm s[] []= +

7 The calculated gain in dB, gm[n], is translated to a linear domain:

g nlin

g nm

[]

[]

=
Ê
Ë
Á

ˆ
¯
˜

10 20

8 The output of the dynamic range compressor is given as

y n x n g nlin[] [] [].= ¥

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. “Digital Dynamic
Range Compressor Design—A Tutorial And Analysis”. Journal of Audio
Engineering Society. Vol. 60, Issue 6, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also

See Also

Blocks
Compressor

3-113

3 System objects in Audio System Toolbox

System Objects
expander | noiseGate | limiter

Topics
“Dynamic Range Control”

Introduced in R2016a

3-114

 configureMIDI

configureMIDI
System object: compressor

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(dRC)

configureMIDI(dRC,propName)

configureMIDI(dRC,propName,controlNumber)

configureMIDI(dRC,propName,controlNumber,'DeviceName',deviceName)

Description

configureMIDI(dRC) starts a MIDI configuration user interface (UI). Use the UI to
synchronize tunable properties of the dynamic range compressor System object, dRC, to
MIDI controls of your choice.

configureMIDI(dRC,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(dRC,propName,controlNumber) makes the property respond to the
MIDI control specified by controlNumber.

configureMIDI(dRC,propName,controlNumber,'DeviceName',deviceName)

makes the property respond to the MIDI control specified by controlNumber on the
device specified by deviceName.

Each tunable property of the compressor System object maps to MIDI controls with a
specified range.

Property Range Unit

Threshold –50 to 0 dB
Ratio 1 to 50 none
KneeWidth 0 to 20 dB

3-115

3 System objects in Audio System Toolbox

Property Range Unit

AttackTime 0 to 4 seconds
ReleaseTime 0 to 4 seconds
MakeUpGain (available
when you set
MakeUpGainMode to
'Property')

–10 to 24 dB

Introduced in R2016a

3-116

 createAudioPluginClass

createAudioPluginClass
System object: compressor

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(dRC)

createAudioPluginClass(dRC,pluginName)

Description

createAudioPluginClass(dRC) creates a System object plugin that implements
the functionality of the compressor System object, dRC. The name of the created class
is the compressor System object variable name followed by 'Plugin', for example,
dRCPlugin.

Note: If the object is locked, the number of input and output channels of the plugin is
equal to the number of channels of the object. Otherwise, the number of channels is equal
to 2.

createAudioPluginClass(dRC,pluginName) specifies the name of your created
System object plugin class.

Example: createAudioPluginClass(dRC,'myCompressor') creates a System
object plugin with class name myCompressor.

Each tunable property of the compressor System object maps to a plugin parameter
with a default range.

Property Plugin Parameter Range Unit

Threshold –50 to 0 dB
Ratio 1 to 50 none
KneeWidth 0 to 20 dB

3-117

3 System objects in Audio System Toolbox

Property Plugin Parameter Range Unit

AttackTime 0 to 4 seconds
ReleaseTime 0 to 4 seconds
MakeUpGain (available
when you set
MakeUpGainMode to
'Property')

–10 to 24 dB

Introduced in R2016a

3-118

 disconnectMIDI

disconnectMIDI
System object: compressor

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(dRC)

Description

disconnectMIDI(dRC) disconnects MIDI controls from your dynamic range
compressor, dRC. Only those MIDI connections established using configureMIDI are
disconnected.

Introduced in R2016a

3-119

3 System objects in Audio System Toolbox

getMIDIConnections
System object: compressor

Get MIDI connection information

Syntax

connectionInfo = getMIDIConnections(dRC)

Description

connectionInfo = getMIDIConnections(dRC) returns a structure,
connectionInfo, containing information about the MIDI connections for your dynamic
range compressor, dRC. Only those MIDI connections established using configureMIDI
are returned. The connectionInfo structure contains a substructure for each tunable
property of dRC that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

3-120

 reset

reset
System object: compressor

Reset internal states of System object

Syntax

reset(dRC)

Description

reset(dRC) resets internal states of the dynamic range compressor, dRC, to their initial
values.

Introduced in R2016a

3-121

3 System objects in Audio System Toolbox

step

System object: compressor

Perform dynamic range compression

Syntax

y = step(dRC,x)

[y,g] = step(dRC,x)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

y = step(dRC,x) performs dynamic range compression on the input signal, x, and
returns the compressed signal, y. The type of dynamic range compression is specified by
the algorithm and properties of the compressor System object, dRC.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

[y,g] = step(dRC,x) also returns the gain, in dB, applied at each input sample.

3-122

 step

Introduced in R2016a

3-123

3 System objects in Audio System Toolbox

visualize
System object: compressor

Visualize static compression characteristics of System object

Syntax

visualize(dRC)

visualize(dRC,myInputRange)

Y = visualize(___)

Description

visualize(dRC) plots the static compression characteristic of the dynamic range
compressor, dRC. The method computes the dB output level for the input range
[-50:0.01:0] dB. The plot is updated automatically when properties of the object
change.

visualize(dRC,myInputRange) enables you to specify the input range in dB. Specify
myInputRange as a vector of ascending values.

Y = visualize(___) returns the dB output level, Y, corresponding to the input range.
You can use any of the input arguments from previous syntaxes.

Introduced in R2016a

3-124

 expander System object

expander System object

Dynamic range expander

Description

The expander System object performs dynamic range expansion independently across
each input channel. Dynamic range expansion attenuates the volume of quiet sounds
below a given threshold. It uses specified attack, release, and hold times to achieve a
smooth applied gain curve. Properties of the expander System object specify the type of
dynamic range expansion.

To perform dynamic range expansion on your input:

1 Define and set up your dynamic range expander. See “Construction” on page
3-125.

2 Call step to perform dynamic range expansion on each channel of the input signal
according to the properties of your expander object. The input must be a real-
valued, double-precision or single-precision matrix. The expander object treats each
column of the input as an independent channel.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

dRE = expander creates a System object, dRE, that performs dynamic range expansion
independently across each input channel.

dRE = expander(thresholdValue) sets the Threshold property to
thresholdValue.

dRE = expander(thresholdValue,ratioValue) sets the Ratio property to
ratioValue.

3-125

3 System objects in Audio System Toolbox

dRE = expander(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Example: dRE = expander('AttackTime',0.01,'SampleRate',16000) creates
a System object, dRE, with the AttackTime property set to 0.01, and the SampleRate
property set to 16000.

Properties

If a property is listed as tunable, then you can change its value even when the object is
locked.

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level below which gain is applied to the input signal.

Tunable: Yes

Ratio — Expansion ratio
5 (default) | real scalar

Expansion ratio, specified as a real scalar greater than or equal to 1.

Expansion ratio is the input/output ratio for signals that undershoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB <

thresholdValue, the expansion ratio is defined as
R

y n T

x n T
=

-

-

([])

([]) .

• R is the expansion ratio.
• y[n] is the output signal in dB.
• x[n] is the input signal in dB.
• T is the threshold in dB.

3-126

 expander System object

Tunable: Yes

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

Knee width is the transition area in the expansion characteristic.

For soft knee characteristics, the transition area is defined by the relation

y x

R x T
W

W
= +

- ¥ - -Ê
ËÁ

ˆ
¯̃

¥()

()1
2

2

2

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• R is the expansion ratio.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the expander gain to rise from 10% to 90% of its final
value when the input goes below the threshold.

Tunable: Yes

ReleaseTime — Release time (s)
0.2 (default) | real scalar

3-127

3 System objects in Audio System Toolbox

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the expander gain to drop from 90% to 10% of its final
value when the input goes above the threshold.

Tunable: Yes

HoldTime — Hold time (s)
0.05 (default) | real scalar

Hold time in seconds, specified as a real scalar greater than or equal to 0.

Hold time is the period in which the applied gain is held constant before it starts
moving toward its steady-state value. Hold time begins when the input level crosses the
operation threshold.

Tunable: Yes

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes

Methods

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

getMIDIConnections Get MIDI connection information
reset Reset internal states of System object
step Perform dynamic range expansion

3-128

 expander System object

visualize Visualize static expander characteristics of
System object

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Expand Audio Signal

Use dynamic range expansion to attenuate background noise from an audio signal.

Set up the audio file reader and audio device writer System objects.

frameLength = 1024;

fileReader = dsp.AudioFileReader(...

 'Filename','Counting-16-44p1-mono-15secs.wav',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

Corrupt the audio signal with Gausian noise. Play the audio.

while ~isDone(fileReader)

 x = fileReader();

 xCorrupted = x + (1e-2/4)*randn(frameLength,1);

 deviceWriter(xCorrupted);

end

release(fileReader);

Set up the expander with a threshold of -40 dB, a ratio of 10, an attack time of 0.01
seconds, a release time of 0.02 seconds, and a hold time of 0 seconds. Use the sample rate
of your audio file reader.

3-129

3 System objects in Audio System Toolbox

dRE = expander(-40,10,...

 'AttackTime',0.01,...

 'ReleaseTime',0.02,...

 'HoldTime',0,...

 'SampleRate',fileReader.SampleRate);

Visualize the expansion static characteristic.

visualize(dRE);

Set up the scope to visualize the signal before and after dynamic range expansion.

scope = dsp.TimeScope(...

3-130

 expander System object

 'SampleRate',fileReader.SampleRate,...

 'TimeSpanOverrunAction','Scroll',...

 'TimeSpan',16,...

 'BufferLength',1.5e6,...

 'YLimits',[-1 1],...

 'ShowGrid',true,...

 'ShowLegend',true,...

 'Title','Corrupted vs. Expanded Audio');

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)

 x = fileReader();

 xCorrupted = x + (1e-2/4)*randn(frameLength,1);

 y = dRE(xCorrupted);

 deviceWriter(y);

 scope([xCorrupted,y])

end

release(fileReader)

release(dRE)

release(deviceWriter)

release(scope)

3-131

3 System objects in Audio System Toolbox

Apply Split-Band De-Essing

De-essing is the process of diminishing sibilant sounds in an audio signal. Sibilance
refers to the s, z, and sh sounds in speech, which can be disproportionately emphasized
during recording. es sounds fall under the category of unvoiced speech with all
consonants, and have a higher frequency than voiced speech. In this example, you
apply split-band de-essing to a speech signal by separating the signal into high and

3-132

 expander System object

low frequencies, applying an expander to diminish the sibilant frequencies, and then
remixing the channels.

Create a dsp.AudioFileReader object and audioDeviceWriter object to read from
a sound file and write to an audio device. Listen to the unprocessed signal. Then release
the file reader and device writer.

fileReader = dsp.AudioFileReader(...

 fullfile(matlabroot,'examples','audio','Sibilance.wav'));

deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)

 audioIn = fileReader();

 deviceWriter(audioIn);

end

release(deviceWriter)

release(fileReader)

Create an expander System object to de-ess the audio signal. Set the sample rate of the
expander to the sample rate of the audio file. Create a two-band crossover filter with a
crossover of 3000 Hz. Sibilance is usually found in this range. Set the crossover slope to
12. Plot the frequency response of the crossover filter to confirm your design visually.

dRExpander = expander(...

 'Threshold',-50, ...

 'AttackTime', 0.05, ...

 'ReleaseTime',0.05, ...

 'HoldTime',0.005, ...

 'SampleRate',fileReader.SampleRate);

crossFilt = crossoverFilter(...

 'NumCrossovers',1, ...

 'CrossoverFrequencies',3000, ...

 'CrossoverSlopes',12);

visualize(crossFilt)

3-133

3 System objects in Audio System Toolbox

Create a dsp.TimeScope object to visualize the original and processed audio signals.

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate, ...

 'TimeSpanOverrunAction','Scroll', ...

 'TimeSpan',4, ...

 'BufferLength',44100*8, ...

 'YLimits',[-1 1], ...

 'ShowGrid',true, ...

 'ShowLegend',true, ...

 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.

3-134

 expander System object

2 Split the audio signal into two bands.
3 Apply dynamic range expansion to the upper band.
4 Remix the channels.
5 Write the processed audio signal to your audio device for listening.
6 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)

 audioIn = fileReader();

 [band1,band2] = crossFilt(audioIn);

 band2processed = dRExpander(band2);

 procAudio = band1 + band2processed;

 deviceWriter(procAudio);

 scope([audioIn procAudio]);

end

release(deviceWriter)

release(fileReader)

release(scope)

release(crossFilt)

release(dRExpander)

3-135

3 System objects in Audio System Toolbox

Algorithms

The expander System object processes a signal frame by frame and element by element.

3-136

 expander System object

1 The N-point signal, x[n], is converted to decibels:

x n x n
dB

[] log []= ¥20 10

2 xdB[n] passes through the gain computer. The gain computer uses the static
characteristic properties of the dynamic range expander to attenuate gain that is
below the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

x x

T x T R x T
W

x

R x T
W

sc dB

dB dB

dB

dB

() =

+ -() ¥ < -Ê
ËÁ

ˆ
¯̃

+
-() - -Ê

Ë
Á

ˆ
¯
˜

2

1
2

2

22 2 2

2

W
T

W
x T

W

x x T
W

dB

dB dB

-Ê
ËÁ

ˆ
¯̃

£ £ +Ê
ËÁ

ˆ
¯̃

> +Ê
ËÁ

ˆ
¯̃

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô

,,

where T is the threshold, R is the ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

3-137

3 System objects in Audio System Toolbox

x x
T x T R x T

x x T
sc dB

dB dB

dB dB

() =
+ -()¥ <

≥

Ï
Ì
Ó

3 The computed gain, gc[n], is calculated as

g n x n x nc sc dB[] [] [].= -

4 gc[n] is smoothed using specified attack, release, and hold time properties:

g n

g n g n

g n

g n g n

g

s

A s A c

s

R s R c

s

[]

[] () []

[]

[] () []

[

=

- + -

-

- + -

a a

a a

1 1

1

1 1

nn

C T g n g n

C T

C T g n g n

A H c s

A H

R H c s

-

Ï

Ì

Ô
Ô

Ó
Ô
Ô

>() > -()
£

>() £

1

1

]

& [] []

& [] [--()
£

1]

C TR H

The attack time coefficient, αA , is calculated as

a A
AFs T

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

The release time coefficient, αR , is calculated as

a
R

RFs T
= -

¥
Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

TA is the attack time period, specified by the AttackTime property. TR is the release
time period, specified by the ReleaseTime property. Fs is the input sampling rate,
specified by the SampleRate property.

CA and CR are hold counters for attack and release, respectively. The limit, TH , is
determined by the HoldTime property.

5 The smoothed gain in dB, gs[n], is translated to a linear domain:

g nlin

g ns

[]

[]

=
Ê
Ë
Á

ˆ
¯
˜

10 20

3-138

 expander System object

6 The output of the dynamic range expander is given as

y n x n g nlin[] [] [].= ¥

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. “Digital Dynamic
Range Compressor Design—A Tutorial And Analysis”. Journal of Audio
Engineering Society. Vol. 60, Issue 6, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also

See Also

Blocks
Expander

System Objects
noiseGate | compressor | limiter

Topics
“Dynamic Range Control”

Introduced in R2016a

3-139

3 System objects in Audio System Toolbox

configureMIDI
System object: expander

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(dRE)

configureMIDI(dRE,propName)

configureMIDI(dRE,propName,controlNumber)

configureMIDI(dRE,propName,controlNumber,'DeviceName',deviceName)

Description

configureMIDI(dRE) starts a MIDI configuration user interface (UI). Use the UI to
synchronize tunable properties of the dynamic range expander System object, dRE, to
MIDI controls of your choice.

configureMIDI(dRE,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(dRE,propName,controlNumber) makes the property respond to the
MIDI control specified by controlNumber.

configureMIDI(dRE,propName,controlNumber,'DeviceName',deviceName)

makes the property respond to the MIDI control specified by controlNumber on the
device specified by deviceName.

Each tunable property of the expander System object maps to MIDI controls with a
specified range.

Property Range Unit

Threshold –140 to 0 dB
Ratio 1 to 50 none
KneeWidth 0 to 20 dB

3-140

 configureMIDI

Property Range Unit

AttackTime 0 to 4 seconds
ReleaseTime 0 to 4 seconds
HoldTime 0 to 4 seconds

Introduced in R2016a

3-141

3 System objects in Audio System Toolbox

createAudioPluginClass
System object: expander

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(dRE)

createAudioPluginClass(dRE,pluginName)

Description

createAudioPluginClass(dRE) creates a System object plugin that implements the
functionality of the expander System object, dRE. The name of the created class is the
expander System object variable name followed by 'Plugin', for example, dREPlugin.

Note: If the object is locked, the number of input and output channels of the plugin is
equal to the number of channels of the object. Otherwise, the number of channels is equal
to 2.

createAudioPluginClass(dRE,pluginName) specifies the name of your created
System object plugin class.

Example: createAudioPluginClass(dRE,'myExpander') creates a System object
plugin with class name myExpander.

Each tunable property of the expander System object maps to a plugin parameter with a
default range.

Property Plugin Parameter Range Unit

Threshold –140 to 0 dB
Ratio 1 to 50 none
KneeWidth 0 to 20 dB

3-142

 createAudioPluginClass

Property Plugin Parameter Range Unit

AttackTime 0 to 4 seconds
ReleaseTime 0 to 4 seconds
HoldTime 0 to 4 seconds

Introduced in R2016a

3-143

3 System objects in Audio System Toolbox

disconnectMIDI
System object: expander

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(dRE)

Description

disconnectMIDI(dRE) disconnects MIDI controls from your dynamic range expander,
dRE. Only those MIDI connections established using configureMIDI are disconnected.

Introduced in R2016a

3-144

 getMIDIConnections

getMIDIConnections
System object: expander

Get MIDI connection information

Syntax

connectionInfo = getMIDIConnections(dRE)

Description

connectionInfo = getMIDIConnections(dRE) returns a structure,
connectionInfo, containing information about the MIDI connections for your dynamic
range expander, dRE. Only those MIDI connections established using configureMIDI
are returned. The connectionInfo structure contains a substructure for each tunable
property of dRE that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

3-145

3 System objects in Audio System Toolbox

reset
System object: expander

Reset internal states of System object

Syntax

reset(dRE)

Description

reset(dRE) resets internal states of the dynamic range expander, dRE, to their initial
values.

Introduced in R2016a

3-146

 step

step

System object: expander

Perform dynamic range expansion

Syntax

y = step(dRE,x)

[y,g] = step(dRE,x)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

y = step(dRE,x) performs dynamic range expansion on the input signal, x, and
returns the expanded signal, y. The type of dynamic range expansion is specified by the
algorithm and properties of the expander System object, dRE.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

[y,g] = step(dRE,x) also returns the gain, in dB, applied at each input sample.

3-147

3 System objects in Audio System Toolbox

Introduced in R2016a

3-148

 visualize

visualize
System object: expander

Visualize static expander characteristics of System object

Syntax

visualize(dRE)

visualize(dRE,myInputRange)

Y = visualize(___)

Description

visualize(dRE) plots the static expansion characteristic of the dynamic range
expander, dRE. The method computes the dB output level for the input range
[-20:0.01:0] dB. The plot is updated automatically when properties of the object
change.

visualize(dRE,myInputRange) enables you to specify the input range in dB. Specify
myInputRange as a vector of ascending values.

Y = visualize(___) returns the dB output level, Y, corresponding to the input range.
You can use any of the input arguments from previous syntaxes.

Introduced in R2016a

3-149

3 System objects in Audio System Toolbox

limiter System object

Dynamic range limiter

Description

The limiter System object performs brick-wall dynamic range limiting independently
across each input channel. Dynamic range limiting suppresses the volume of loud sounds
that cross a given threshold. It uses specified attack and release times to achieve a
smooth applied gain curve. Properties of the limiter System object specify the type of
dynamic range limiting.

To perform dynamic range limiting on your input:

1 Define and set up your dynamic range limiter. See “Construction” on page 3-150.
2 Call step to perform dynamic range limiting on each channel of the input signal

according to the properties of your limiter object. The input must be a real-valued,
double-precision or single-precision matrix. The limiter object treats each column
of the input as an independent channel.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

dRL = limiter creates a System object, dRL, that performs brick-wall dynamic range
limiting independently across each input channel.

dRL = limiter(thresholdValue) sets the Threshold property to
thresholdValue.

dRL = limiter(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

3-150

 limiter System object

Example: dRL = limiter('AttackTime',0.01,'SampleRate',16000) creates a
System object, dRL, with AttackTime property set to 0.01 and SampleRate property
set to 16000.

Properties

If a property is listed as tunable, then you can change its value even when the object is
locked.

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level above which gain is applied to the input signal.

Tunable: Yes

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

Knee width is the transition area in the limiter characteristic.

For soft knee characteristics, the transition area is defined by the relation

y x

x T
W

W
= -

- +Ê
ËÁ

ˆ
¯̃

¥()
2

2

2

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• T is the threshold in dB.
• W is the knee width in dB.

3-151

3 System objects in Audio System Toolbox

Tunable: Yes

AttackTime — Attack time (s)
0 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the limiter gain to rise from 10% to 90% of its final value
when the input goes above the threshold.

Tunable: Yes

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the limiter gain to drop from 90% to 10% of its final
value when the input goes below the threshold.

Tunable: Yes

MakeUpGainMode — Make-up gain mode
'Auto' (default) | 'Property'

Make-up gain mode, specified as 'Auto' or 'Property'.

• 'Auto' — Make-up gain is applied at the output of the dynamic range limiter such
that a steady-state 0 dB input has a 0 dB output.

• 'Property' — Make-up gain is set to the value specified in the MakeUpGain
property.

MakeUpGain — Make-up gain (dB)
0 (default) | real scalar

Make-up gain in dB, specified as a real scalar.

Make-up gain compensates for gain lost during limiting. It is applied at the output of
the dynamic range limiter. This property is available when you set MakeUpGainMode to
'Property'.

Tunable: Yes

3-152

 limiter System object

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes

Methods

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

getMIDIConnections Get MIDI connection information
reset Reset internal states of System object
step Perform dynamic range limiting
visualize Visualize static limiter characteristics of

System object

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Limit Audio Signal

Use dynamic range limiting to suppress the volume of loud sounds.

3-153

3 System objects in Audio System Toolbox

Set up the audio file reader and audio device writer System objects.

frameLength = 1024;

fileReader = dsp.AudioFileReader(...

 'Filename','RockDrums-44p1-stereo-11secs.mp3',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

Set up the limiter to have a threshold of -15 dB, an attack time of 0.005 seconds, and a
release time of 0.1 seconds. Set make-up gain to 0 dB (default). To specify this value, set
the make-up gain mode to 'Property' but do not specify the MakeUpGain property. Use
the sample rate of your audio file reader.

dRL = limiter(-15,...

 'AttackTime',0.005,...

 'ReleaseTime',0.1,...

 'MakeUpGainMode','Property',...

 'SampleRate',fileReader.SampleRate);

Visualize the static characteristic of the limiter.

visualize(dRL);

3-154

 limiter System object

Set up a time scope to visualize the original signal and the limited signal.

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate,...

 'TimeSpanOverrunAction','Scroll',...

 'TimeSpan',1,...

 'BufferLength',44100*4,...

 'YLimits',[-1 1],...

 'ShowGrid',true,...

 'LayoutDimensions',[2,1],...

 'NumInputPorts',2,...

 'ShowLegend',true,...

 'Title',['Original vs. Limited Audio (top)'...

 ' and Limiter Gain in dB (bottom)']);

3-155

3 System objects in Audio System Toolbox

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)

 x = fileReader();

 [y,g] = dRL(x);

 deviceWriter(y);

 x1 = x(:,1);

 y1 = y(:,1);

 g1 = g(:,1);

 scope([x1,y1],g1);

end

release(fileReader)

release(dRL)

release(deviceWriter)

release(scope)

3-156

 limiter System object

Compare Dynamic Range Limiter and Compressor

A dynamic range limiter is a special type of dynamic range compressor. In limiters, the
level above an operational threshold is hard limited. In the simplest implementation of
a limiter, the effect is equivalent to audio clipping. In compressors, the level above an
operational threshold is lowered using a specified compression ratio. Using a compression
ratio results in a smoother processed signal.

3-157

3 System objects in Audio System Toolbox

Compare Limiter and Compressor Applied to Sinusoid

Create a limiter System object™ and a compressor System object. Set the
AttackTime and ReleaseTime properties of both objects to zero. Create an
audioOscillator System object to generate a sinusoid with Frequency set to 5 and
Amplitude set to 0.1.

dRL = limiter('AttackTime',0,'ReleaseTime',0);

dRC = compressor('AttackTime',0,'ReleaseTime',0);

osc = audioOscillator('Frequency',5,'Amplitude',0.1);

Create a time scope to visualize the generated sinusoid and the processed sinusoid.

scope = dsp.TimeScope(...

 'SampleRate',osc.SampleRate, ...

 'TimeSpan',2, ...

 'BufferLength',osc.SampleRate*4, ...

 'YLimits',[-1 1], ...

 'TimeSpanOverrunAction','Scroll', ...

 'ShowGrid',true, ...

 'LayoutDimensions',[2 1], ...

 'NumInputPorts',2, ...

 'Title', ...

 'Original Signal vs. Limited Signal (top) and Compressed Signal (bottom)');

In an audio stream loop, visualize the original sinusoid and the sinusoid processed by a
limiter and a compressor. Increment the amplitude of the original sinusoid to illustrate
the effect.

while osc.Amplitude < 0.75

 x = osc();

 xLimited = dRL(x);

 xCompressed = dRC(x);

 scope([x xLimited],[x xCompressed]);

 osc.Amplitude = osc.Amplitude + 0.0002;

end

release(scope)

release(dRL)

release(dRC)

release(osc)

3-158

 limiter System object

Compare Limiter and Compressor Applied to Audio Signal

Compare the effect of dynamic range limiters and compressors on a drum track. Create a
dsp.AudioFileReader object and audioDeviceWriter object to read audio from a file
and write to your audio output device. To emphasize the effect of dynamic range control,
set the operational threshold of the limiter and compressor to -20 dB.

dRL.Threshold = -20;

3-159

3 System objects in Audio System Toolbox

dRC.Threshold = -20;

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Read successive frames from an audio file in a loop. Listen to and compare the effect of
dynamic range limiting and dynamic range compression on an audio signal.

numFrames = 300;

fprintf('Now playing original signal...\n')

for i = 1:numFrames

 x = fileReader();

 deviceWriter(x);

end

reset(fileReader);

fprintf('Now playing limited signal...\n')

for i = 1:numFrames

 x = fileReader();

 xLimited = dRL(x);

 deviceWriter(xLimited);

end

reset(fileReader);

fprintf('Now playing compressed signal...\n')

for i = 1:numFrames

 x = fileReader();

 xCompressed = dRC(x);

 deviceWriter(xCompressed);

end

release(fileReader)

release(deviceWriter)

release(dRC)

release(dRL)

Now playing original signal...

Now playing limited signal...

3-160

 limiter System object

Now playing compressed signal...

Algorithms
The limiter System object processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to decibels:

x n x n
dB

[] log []= ¥20 10

2 xdB[n] passes through the gain computer. The gain computer uses the static
characteristic properties of the dynamic range limiter to brickwall gain that is above
the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

x x

x x T
W

x

x T
W

W
T

W
sc dB

dB dB

dB

dB

() =

< -Ê
ËÁ

ˆ
¯̃

-
- +Ê

Ë
Á

ˆ
¯
˜

-Ê
ËÁ

ˆ
¯̃

£

2

2

2 2

2

xx T
W

T x T
W

dB

dB

£ +Ê
ËÁ

ˆ
¯̃

> +Ê
Ë
Á

ˆ
¯
˜

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô

2

2

,

3-161

3 System objects in Audio System Toolbox

where T is the threshold and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

x x
x x T

T x T
sc dB

dB dB

dB

() =
<

≥

Ï
Ì
Ó

3 The computed gain, gc[n], is calculated as

g n x n x nc sc dB[] [] [].= -

4 gc[n] is smoothed using specified attack and release time properties:

g n
g n g n g n g n

g n gs
A s A c c s

R s R

[]
[] () [], [] []

[] ()
=

- + - > -

- + -

a a

a a

1 1 1

1 1 cc c sn g n g n[], [] []£ -

Ï
Ì
Ó 1

The attack time coefficient, αA , is calculated as

a A
AFs T

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

The release time coefficient, αR , is calculated as

a
R

RFs T
= -

¥
Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

TA is the attack time period, specified by the AttackTime property. TR is the release
time period, specified by the ReleaseTime property. Fs is the input sampling rate,
specified by the SampleRate property.

5 If MakeUpGainMode is set to the default 'Auto', the make-up gain is calculated as
the negative of the computed gain for a 0 dB input:

M x x
sc dB

= - =()0

3-162

 limiter System object

Given a steady-state input of 0 dB, this configuration achieves a steady-state
output of 0 dB. The make-up gain is determined by the Threshold and KneeWidth
properties. It does not depend on the input signal.

6 The make-up gain, M, is added to the smoothed gain, gs[n]:

g n g n Mm s[] []= +

7 The calculated gain in dB, gm[n], is translated to a linear domain:

g nlin

g nm

[]

[]

=
Ê
Ë
Á

ˆ
¯
˜

10 20

8 The output of the dynamic range limiter is given as

y n x n g nlin[] [] [].= ¥

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. “Digital Dynamic
Range Compressor Design—A Tutorial And Analysis”. Journal of Audio
Engineering Society. Vol. 60, Issue 6, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

3-163

3 System objects in Audio System Toolbox

See Also

See Also

Blocks
Limiter

System Objects
noiseGate | compressor | expander

Topics
“Dynamic Range Control”

Introduced in R2016a

3-164

 configureMIDI

configureMIDI
System object: limiter

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(dRL)

configureMIDI(dRL,propName)

configureMIDI(dRL,propName,controlNumber)

configureMIDI(dRL,propName,controlNumber,'DeviceName',deviceName)

Description

configureMIDI(dRL) starts a MIDI configuration user interface (UI). Use the UI to
synchronize tunable properties of the dynamic range limiter System object, dRL, to MIDI
controls of your choice.

configureMIDI(dRL,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(dRL,propName,controlNumber) makes the property respond to the
MIDI control specified by controlNumber.

configureMIDI(dRL,propName,controlNumber,'DeviceName',deviceName)

makes the property respond to the MIDI control specified by controlNumber on the
device specified by deviceName.

Each tunable property of the lLimiter System object maps to a MIDI control with a
specified range.

Property Range Unit

Threshold –50 to 0 dB
KneeWidth 0 to 20 dB
AttackTime 0 to 4 seconds

3-165

3 System objects in Audio System Toolbox

Property Range Unit

ReleaseTime 0 to 4 seconds
MakeUpGain (available
when you set
MakeUpGainMode to
'Property')

–10 to 24 dB

Introduced in R2016a

3-166

 createAudioPluginClass

createAudioPluginClass
System object: limiter

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(dRL)

createAudioPluginClass(dRL,pluginName)

Description

createAudioPluginClass(dRL) creates a System object plugin that implements the
functionality of the dynamicRangeLimiter System object, dRL. The name of the created
class is the limiter System object variable name followed by 'Plugin', for example,
dRLPlugin.

Note: If the object is locked, the number of input and output channels of the plugin is
equal to the number of channels of the object. Otherwise, the number of channels is equal
to 2.

createAudioPluginClass(dRL,pluginName) specifies the name of your created
System object plugin class.

Example: createAudioPluginClass(dRL,'myLimiter') creates a System object
plugin with class name myLimiter.

Each tunable property of the limiter System object maps to a plugin parameter with a
default range.

Property Plugin Parameter Range Unit

Threshold –50 to 0 dB
KneeWidth 0 to 20 dB
AttackTime 0 to 4 s

3-167

3 System objects in Audio System Toolbox

Property Plugin Parameter Range Unit

ReleaseTime 0 to 4 s
MakeUpGain (available
when you set
MakeUpGainMode to
'Property')

–10 to 24 dB

Introduced in R2016a

3-168

 disconnectMIDI

disconnectMIDI
System object: limiter

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(dRL)

Description

disconnectMIDI(dRL) disconnects MIDI controls from your dynamic range limiter,
dRL. Only those MIDI connections established using configureMIDI are disconnected.

Introduced in R2016a

3-169

3 System objects in Audio System Toolbox

getMIDIConnections
System object: limiter

Get MIDI connection information

Syntax

connectionInfo = getMIDIConnections(dRL)

Description

connectionInfo = getMIDIConnections(dRL) returns a structure,
connectionInfo, containing information about the MIDI connections for your dynamic
range limiter, dRL. Only those MIDI connections established using configureMIDI
are returned. The connectionInfo structure contains a substructure for each tunable
property of dRL that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

3-170

 reset

reset
System object: limiter

Reset internal states of System object

Syntax

reset(dRL)

Description

reset(dRL) resets internal states of the dynamic range limiter, dRL, to their initial
values.

Introduced in R2016a

3-171

3 System objects in Audio System Toolbox

step

System object: limiter

Perform dynamic range limiting

Syntax

y = step(dRL,x)

[y,g] = step(dRL,x)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

y = step(dRL,x) performs dynamic range limiting on the input signal, x, and returns
the limited signal, y. The type of dynamic range limiting is specified by the algorithm
and properties of the limiter System object, dRL.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

[y,g] = step(dRL,x) also returns the gain, in dB, applied at each input sample.

3-172

 step

Introduced in R2016a

3-173

3 System objects in Audio System Toolbox

visualize
System object: limiter

Visualize static limiter characteristics of System object

Syntax

visualize(dRL)

visualize(dRL,myInputRange)

Y = visualize(___)

Description

visualize(dRL) plots the static compression characteristic of the dynamic
range limiter, dRL. The method computes the dB output level for the input range
[-50:0.01:0] dB. The plot is updated automatically when properties of the object
change.

visualize(dRL,myInputRange) enables you to specify the input range in dB. Specify
myInputRange as a vector of ascending values.

Y = visualize(___) returns the dB output level, Y, corresponding to the input range.
You can use any of the input arguments from previous syntaxes.

Introduced in R2016a

3-174

 loudnessMeter System object

loudnessMeter System object

Standard-compliant loudness measurements

Description

The loudnessMeter System object computes the loudness, loudness range, and true-
peak of an audio signal in accordance with EBU R 128 and ITU-R BS.1770-4 standards.

To implement loudness metering on your input:

1 Define and set up your loudness meter. See “Construction” on page 3-175.
2 Call step to perform loudness metering on the input signal according to the

properties of your loudnessMeter object. The input must be a real-valued, double-
precision or single-precision matrix. The loudnessMeter object treats each column
of the input as an independent channel. If you use the default ChannelWeights,
specify the input channels in order: [Left, Right, Center, Left surround, Right
surround].

Note: Alternatively, instead of using the step method to perform the operation defined
by the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Construction

loudMtr = loudnessMeter creates a System object, loudMtr, that performs loudness
metering independently across each input channel.

loudMtr = loudnessMeter(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Example: loudMtr = loudnessMeter('ChannelWeights',[1.2,
0.8],'SampleRate',12000) creates a System object, loudMtr, with channel weights
of 1.2 and 0.8 , and a sample rate of 12,000 Hz.

3-175

3 System objects in Audio System Toolbox

Properties

If a property is listed as tunable, then you can change its value even when the object is
locked.

ChannelWeights — Linear weighting applied to each input channel
[1, 1, 1, 1.41, 1.41] (default) | nonnegative row vector

Linear weighting applied to each input channel, specified as a row vector of nonnegative
values. The number of elements in the row vector must be equal to or greater than the
number of input channels. Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default
channel weights, specify the input signal channels as a matrix in this order: [Left, Right,
Center, Left surround, Right surround].

It is a best practice to specify the ChannelWeights property in order: [Left, Right,
Center, Left surround, Right surround].

Tunable: Yes

UseRelativeScale — Use relative scale for loudness measurements
false (default) | true

Use relative scale for loudness measurements, specified as a logical scalar.

• false — The loudness measurements are absolute, and returned in loudness units
full scale (LUFS).

• true — The loudness measurements are relative to the TargetLoudness value, and
returned in loudness units (LU).

Tunable: No

TargetLoudness — Target loudness level for relative scale (LUFS)
-23 (default) | real scalar

Target loudness level for relative scale in LUFS, specified as a real scalar.

For example, if the TargetLoudness is –23 LUFS, then a loudness value of –23 LUFS is
reported as 0 LU.

Tunable: Yes

3-176

 loudnessMeter System object

Dependencies

To enable this property, set UseRelativeScale to true.

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes

Methods

reset Reset internal states of System object
step Compute loudness in accordance with EBU

R 128 and ITU-R BS.1770-4
visualize Open 'EBU Mode' meter display

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Loudness of Audio Signal

Create a file reader object to read in an audio file. Create a loudnesMeter System
object. Use the sample rate of the audio file as the sample rate of the loudnessMeter.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');

loudMtr = loudnessMeter('SampleRate',fileReader.SampleRate);

3-177

3 System objects in Audio System Toolbox

Read in the audio file in an audio stream loop. Use the loudness meter to determine the
momentary, short-term, and integrated loudness of the audio signal. Cache the loudness
measurements for analysis.

momentary = [];

shortTerm = [];

integrated = [];

while ~isDone(fileReader)

 x = fileReader();

 [m,s,i] = loudMtr(x);

 momentary = [momentary;m];

 shortTerm = [shortTerm;s];

 integrated = [integrated;i];

end

release(fileReader)

Plot the momentary, short-term, and integrated loudness of the audio signal.

t = linspace(0,11,length(momentary));

plot(t,[momentary,shortTerm,integrated])

title('Loudness Measurements')

legend('Momentary','Short-term','Integrated')

xlabel('Time (seconds)')

ylabel('LUFS')

3-178

 loudnessMeter System object

Plot Momentary Loudness and Loudness Range of Audio Stream

Create an audio file reader and an audio device writer.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3', ...

 'SamplesPerFrame',1024);

fs = fileReader.SampleRate;

deviceWriter = audioDeviceWriter('SampleRate',fs);

Create a time scope to visualize your audio stream loop.

timeScope = dsp.TimeScope('NumInputPorts',2, ...

 'SampleRate',fs, ...

 'TimeSpanOverrunAction','Scroll', ...

3-179

3 System objects in Audio System Toolbox

 'LayoutDimensions',[2,1], ...

 'TimeSpan',5, ...

 'BufferLength',5*fs);

% Top subplot of scope

timeScope.Title = 'Momentary Loudness';

timeScope.YLabel = 'LUFS';

timeScope.YLimits = [-40, 0];

% Bottom subplot of scope

timeScope.ActiveDisplay = 2;

timeScope.Title = 'Loudness Range';

timeScope.YLabel = 'LU';

timeScope.YLimits = [-1, 2];

Create a loudness meter. Use the sample rate of your input file as the sample rate of your
loudness meter. Call visualize to open an 'EBU-mode' visualization for your loudness
meter.

loudMtr = loudnessMeter('SampleRate',fs);

visualize(loudMtr);

In an audio stream loop:

• Read in your audio file.
• Compute the momentary loudness and loudness range.

3-180

 loudnessMeter System object

• Visualize the momentary loudness and loudness range on your time scope.
• Listen to the audio signal.

The 'EBU-mode' loudness meter visualization updates automatically while it is open. As
a best practice, release your file reader and device writer once the loop is completed.

while ~isDone(fileReader)

 audioIn = fileReader();

 [momentaryLoudness,~,~,LRA] = loudMtr(audioIn);

 timeScope(momentaryLoudness,LRA);

 deviceWriter(audioIn);

end

release(fileReader)

release(deviceWriter)

3-181

3 System objects in Audio System Toolbox

3-182

 loudnessMeter System object

Relative Scale for Loudness Measurements

Create an audio file reader to read in an audio file. Create an audio device writer to write
the audio file to your audio device. Use the sample rate of your file reader as the sample
rate of your device writer.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav',...

 'SamplesPerFrame',1024);

fs = fileReader.SampleRate;

deviceWriter = audioDeviceWriter('SampleRate',fs);

Create a loudness meter with the target loudness set to the default -23 LUFS. Open the
'EBU-mode' loudness meter visualization.

loudMtr = loudnessMeter('UseRelativeScale',true);

visualize(loudMtr)

3-183

3 System objects in Audio System Toolbox

Create a time scope to visualize your audio signal and its measured relative momentary
and short-term loudness.

scope = dsp.TimeScope(...

 'NumInputPorts',3, ...

 'SampleRate',fs, ...

 'TimeSpanOverrunAction','Scroll', ...

 'TimeSpan',5, ...

 'BufferLength',5*fs, ...

 'Title','Audio Signal, Momentary Loudness, and Short-Term Loudness', ...

 'ChannelNames',{'Audio signal','Momentary loudness','Short-term loudness'}, ...

 'YLimits',[-16,16], ...

 'YLabel','Amplitude / LU', ...

 'ShowLegend',true);

In an audio stream loop, listen to and visualize the audio signal.

while ~isDone(fileReader)

 x = fileReader();

 [momentary,shortTerm] = loudMtr(x);

 scope(x,momentary,shortTerm)

 deviceWriter(x);

end

release(deviceWriter)

release(fileReader)

3-184

 loudnessMeter System object

3-185

3 System objects in Audio System Toolbox

Algorithm

The loudnessMeter System object calculates the momentary loudness, short-term
loudness, integrated loudness, loudness range (LRA), and true-peak value of an audio
signal. You can specify any number of channels and nondefault channel weights used for

3-186

 loudnessMeter System object

loudness measurements. The loudnessMeter algorithm is described for the general case
of n channels with default channel weights.

Loudness Measurements

The input channels, x, pass through a K-weighted weightingFilter. The K-weighted filter
shapes the frequency spectrum to reflect perceived loudness.

Momentary Loudness and Integrated Loudness

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-
second overlap. If the required number of samples have not been collected yet,
the loudnessMeter object returns the last computed values for momentary and
integrated loudness. If enough samples have been collected, then the power (mean
square) of each segment of the K-weighted channels is calculated:

mP
w

y ki i
k

w

=

=

Â
1 2

1

[]

3-187

3 System objects in Audio System Toolbox

• mPi is the momentary power of the ith segment.
• w is the segment length in samples.

2 The momentary loudness, mL, is computed for each segment:

mL G mP LUFSi c i c

c

n

= - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃()

=
Â0 691 10 10

1

. log ,

• Gc is the weighting for channel c.

mL is the momentary loudness returned by your loudnessMeter System object. It
is also used internally to calculate the integrated loudness (steps 3–6).

3 The integrated loudness measurement considers the audio signal since the last reset
of your loudness meter. To calculate integrated loudness, the momentary power is
passed through a gating system. The gate system pauses the measurement during
periods of low sound, such as stretches of silence in a movie.

The momentary power segment is gated using the corresponding momentary
loudness segment calculation:

mP mPi jÆ

j i mLi= ≥ -{ }70

mPj is cached until your loudnessMeter is reset.

4 The momentary power subset, mPj, passes through a relative threshold gate.

3-188

 loudnessMeter System object

a The relative threshold, Γ, is computed:

G = - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃ -

=
Â0 691 10 1010

1

. log G lc

c

n

c

lc is the mean momentary power of channel c:

l
j

mPc j c
j

= ()Â
1

,

b The momentary power subset, mPj, is gated using relative threshold Γ:

mP mPj kÆ

k j mPj= ≥{ }G

The relative threshold is recomputed during each call to your loudnessMeter
object. The cached values of mPj are gated again depending on the updated value of
Γ.

5 The momentary power segments are averaged:

P
k

mPk

k

= Â
1

6 The integrated loudness is computed by passing the mean momentary power, P,
through the Compute Loudness system:

Integrated Loudness = - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
Â0 691 10 10

1

. log G P LUFSc c

c

n

Short-Term Loudness and Loudness Range

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second
overlap. If the required number of samples have not been collected yet, the
loudnessMeter object returns the last computed values for short-term loudness

3-189

3 System objects in Audio System Toolbox

and loudness range. If enough samples have been collected, then the power (mean
square) of each K-weighted channel is calculated:

sP
w

y ki i
k

w

=

=

Â
1 2

1

[]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

2 The short-term loudness, sL, is computed for each segment:

sL G sP LUFSi c i c

c

n

= - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃()

=
Â0 691 10 10

1

. log ,

• Gc is the weighting for channel c.

sL is the short-term loudness returned by your loudnessMeter System object. It is
also used internally to calculate the loudness range (steps 3–5).

3 The short-term loudness is gated using an absolute threshold:

sL sLi jÆ

j i sLi= ≥ -{ }70

sLj is cached until your loudnessMeter is reset.
4 The short-term loudness subset, sLj passes through a relative threshold gate.

3-190

 loudnessMeter System object

a The gated short-term loudness is converted back to linear and then the mean is
taken:

sP
j

j

sL

j

j

=
Ê
Ë
Á

ˆ
¯
˜

Â1
10

10

The relative threshold, K, is computed:

K sPj= - + ()20 10 10log

b The short-term loudness subset, sLj, is gated using the relative threshold:

sL sLj kÆ

k j sL Kj= ≥{ }

The relative threshold, K, is recomputed during each call to your loudnessMeter
object. The cached values of sLj are gated again depending on the updated value of K.

5 The short-term loudness subset, sLk, is sorted. The loudness range is calculated
as between the 10th and 95th percentiles of the distribution, and is returned in
loudness units (LU).

True-Peak

The true-peak measurement considers only the current input frame of a call to your
loudness meter.

1 The signal is oversampled to at least 192 kHz. To optimize processing, the input
sample rate determines the exact oversampling. An input sample rate below 750 Hz
is not considered.

3-191

3 System objects in Audio System Toolbox

Input Sample Rate (kHz) Upsample Factor

[0.75,1.5) 256
[1.5,3) 128
[3,6) 64
[6,12) 32
[12,24) 16
[24,48) 8
[48,96) 4
[96,192) 2
[192,∞) Not required

2 The oversampled signal, a, passes through a lowpass filter with a half-
polyphase length of 12 and stopband attenuation of 80 dB. The filter design uses
designMultirateFIR.

3 The filtered signal, b, is rectified and converted to the dB TP scale:

c b= ¥ ()20 10log

4 The true-peak is determined as the maximum of the converted signal, c.

References

[1] International Telecommunication Union; Radiocommunication Sector. Algorithms
to Measure Audio Programme Loudness and True-Peak Audio Level. ITU-R
BS.1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum
Level of Audio Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to
Supplement EBU R 128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

[4] European Broadcasting Union. Loudness Range: A Measure to Supplement EBU R
128 Loudness Normalization. EBU R 128 Tech 3342. 2016.

3-192

 loudnessMeter System object

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

Supports MATLAB Function block: No

Dynamic Memory Allocation must not be turned off.

See Also

See Also

System Objects
weightingFilter | octaveFilter

Blocks
Loudness Meter

Functions
integratedLoudness

Introduced in R2016b

3-193

3 System objects in Audio System Toolbox

reset
System object: loudnessMeter

Reset internal states of System object

Syntax

reset(loudMtr)

Description

reset(loudMtr) resets internal states of the loudness meter, loudMtr, to their initial
values.

Introduced in R2016b

3-194

 step

step
System object: loudnessMeter

Compute loudness in accordance with EBU R 128 and ITU-R BS.1770-4

Syntax

[momentary,shortTerm,integrated,range,peak] = step(loudMtr,x)

Description

Note: Alternatively, instead of using the step method to perform the operation defined
by the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

[momentary,shortTerm,integrated,range,peak] = step(loudMtr,x) returns
measurement values for momentary and short-term loudness of the input to your
loudness meter, and the true-peak value of the current input frame, x. It also returns
the integrated loudness and loudness range of the input to your loudness meter since the
last time reset was called. By default, loudness measurements are returned in loudness
units full scale (LUFS). If you set the UseRelativeScale property to true, loudness
measurements are returned in loudness units (LU). The true-peak value is returned in
dB TP.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel. If you use the default
ChannelWeights of the loudnessMeter, as a best practice, specify the input channels
in this order: [Left, Right, Center, Left surround, Right surround].

momentary, shortTerm, integrated, and range are column vectors with the same
number of rows as x. peak is a scalar value.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as

3-195

3 System objects in Audio System Toolbox

the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016b

3-196

 visualize

visualize
System object: loudnessMeter

Open 'EBU Mode' meter display

Syntax

visualize(loudMtr)

Description

visualize(loudMtr) opens an 'EBU Mode' loudness meter display. The values
of momentary loudness, short-term loudness, integrated loudness, loudness range,
and true-peak are updated as the simulation progresses. The display also shows the
maximum value of momentary and short-term loudness, and the time since the last call
to reset.

As per the EBU R 128 standard, the loudness range value is displayed in yellow for the
first 60 seconds after reset. The yellow indicates that the value is not yet considered
stable.

Introduced in R2016b

3-197

3 System objects in Audio System Toolbox

multibandParametricEQ System object

Multiband parametric equalizer

Description

The multibandParametricEQ System object performs multiband parametric
equalization independently across each channel of input using specified center
frequencies, gains, and quality factors. You can configure the System object with up to
10 bands. You can add low-shelf and high-shelf filters, as well as highpass (low-cut) and
lowpass (high-cut) filters.

To implement a multiband parametric equalizer:

1 Define and set up your multiband parametric equalizer. See “Construction” on page
3-198.

2 Call step to perform multiband parametric equalization on each channel of the
input signal according to the properties of your multibandParametricEQ object.
The input must be a real-valued, double-precision or single-precision matrix. The
multibandParametricEQ object treats each column of the input as an independent
channel.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

mPEQ = multibandParametricEQ creates a System object, mPEQ, that performs
multiband parametric equalization.

mPEQ = multibandParametricEQ(Name,Value) sets each construction argument
or property Name to the specified Value. Unspecified properties and construction
arguments have default values.

3-198

 multibandParametricEQ System object

Example: mPEQ = multibandParametricEQ('NumEQBands',3,'Frequencies',
[300,1200,5000]) creates a multiband parametric equalizer System object, mPEQ, with
NumEQBands set to 3 and the Frequencies property set to [300,1200,5000].

Note: The value specified by NumEQBands must be the length of the row vectors specified
by Frequencies, QualityFactors, and PeakGains. During construction, the first
property you specify locks the value.

Construction Arguments

NumEQBands — Number of equalizer bands
3 (default) | integer in the range 1 to 10

Number of equalizer bands, specified as an integer in the range 1 to 10. The number of
equalizer bands does not include shelving filters, highpass filters, or lowpass filters.

NumEQBands must be set during construction. It cannot be modified after construction.

Example: mPEQ = multibandParametricEQ('NumEQBands',5) constructs a
multiband parametric equalizer with 5 bands.

EQOrder — Order of individual equalizer bands
2 (default) | even integer

Order of individual equalizer bands, specified as an even integer. All equalizer bands
have the same order.

EQOrder must be set during construction. It cannot be modified after construction.

Example: mPEQ = multibandParametricEQ('EQOrder',6) constructs a multiband
parametric equalizer with the default 3 bands, all of order 6.

HasLowShelfFilter — Low-shelf filter toggle
false (default) | true

Low-shelf filter toggle, specified as false or true.

• false — Do not include low-shelf filter in multiband parametric equalizer
implementation.

• true — Include low-shelf filter in multiband parametric equalizer implementation.

3-199

3 System objects in Audio System Toolbox

HasLowpassFilter must be set during construction. It cannot be modified after
construction.
Example: mPEQ = multibandParametricEQ('HasLowShelfFilter',true)
constructs a default multiband parametric equalizer with low-shelf filtering enabled.

HasHighShelfFilter — High-shelf filter toggle
false (default) | true

High-shelf filter toggle, specified as false or true.

• false — Do not include high-shelf filter in multiband parametric equalizer
implementation.

• true — Include high-shelf filter in multiband parametric equalizer implementation.

HasHighShelfFilter must be set during construction. It is cannot be modified after
construction.
Example: mPEQ = multibandParametricEQ('HasHighShelfFilter',true)
constructs a default multiband parametric equalizer with high-shelf filtering enabled.

HasLowpassFilter — Lowpass filter toggle
false (default) | true

Lowpass filter toggle, specified as false or true.

• false — Do not include lowpass filter in multiband parametric equalizer
implementation.

• true — Include lowpass filter in multiband parametric equalizer implementation.

HasLowpassFilter must be set during construction. It cannot be modified after
construction.
Example: mPEQ = multibandParametricEQ('HasLowpassFilter',true)
constructs a default multiband parametric equalizer with lowpass filtering enabled.

HasHighpassFilter — Highpass filter toggle
false (default) | true

Highpass filter toggle, specified as false or true.

• false — Do not include highpass filter in multiband parametric equalizer
implementation.

• true — Include highpass filter in multiband parametric equalizer implementation.

3-200

 multibandParametricEQ System object

HasHighpassFilter must be set during construction. It cannot be modified after
construction.
Example: mPEQ = multibandParametricEQ('HasHighpassFilter',true)
constructs a default multiband parametric equalizer with highpass filtering enabled.

Oversample — Oversample toggle
false (default) | true

Oversample toggle, specified as false or true.

• false — Runs the multiband parametric equalizer at the input sample rate.
• true — Runs the multiband parametric equalizer at two times the input sample rate.

Oversampling minimizes the frequency warping effects introduced by the bilinear
transformation.

A halfband interpolator implements oversampling before equalization. A halfband
decimator reduces the sample rate back to the input sampling rate after equalization.

Oversample must be set during construction. It cannot be modified after construction.

Example: mPEQ = multibandParametricEQ('Oversample',true) constructs a
default multiband parametric equalizer with oversampling enabled.

Properties

If a property is listed as tunable, then you can change its value even when the object is
locked.

Multiband Equalizer

Frequencies — Center frequencies of equalizer bands (Hz)
[100,181,325] (default) | row vector of length NumEQBands

Center frequencies of equalizer bands in Hz, specified as a row vector of length
NumEQBands. The vector consists of real scalars in the range 0 to SampleRate/2.

Tunable: Yes

QualityFactors — Quality factors of equalizer bands
[1.6,1.6,1.6] (default) | row vector of length NumEQBands

3-201

3 System objects in Audio System Toolbox

Quality factors of equalizer bands, specified as a row vector of length NumEQBands. The
vector consists of real scalars in the range 0.2 to 700. Any values outside the range are
saturated.

Tunable: Yes

PeakGains — Peak or dip filter gains (dB)
[0,0,0] (default) | row vector of length NumEQBands

Peak or dip filter gains in dB, specified as a row vector of length NumEQBands. The vector
consists of real scalars in the range –Inf to 20. Values above 20 are saturated.

Tunable: Yes

Low-Shelf Filter

LowShelfCutoff — Low-shelf filter cutoff (Hz)
200 (default) | scalar

Low-shelf filter cutoff in Hz, specified as a scalar greater than or equal to 0.

This property is available when you set HasLowShelfFilter to true during
construction.

Tunable: Yes

LowShelfSlope — Low-shelf filter slope coefficient
1.5 (default) | real scalar in the range 0.1 to 5

Low-shelf filter slope coefficient, specified as a real scalar in the range 0.1 to 5. Values
outside the range are saturated.

This property is available when you set HasLowShelfFilter to true during
construction.

Tunable: Yes

LowShelfGain — Low-shelf filter gain (dB)
0 (default) | real scalar in the range –12 to 12

Low-shelf filter gain in dB, specified as a real scalar in the range –12 to 12. Values
outside the range are saturated.

3-202

 multibandParametricEQ System object

This property is available when you set HasLowShelfFilter to true during
construction.

Tunable: Yes

High-Shelf Filter

HighShelfCutoff — High-shelf filter cutoff (Hz)
15000 (default) | nonnegative real scalar

High-shelf filter cutoff in Hz, specified as a real scalar greater than or equal to 0.

This property is available when you set HasHighShelfFilter to true during
construction.

Tunable: Yes

HighShelfSlope — High-shelf slope coefficient
1.5 (default) | real scalar in the range 0.1 to 5

High-shelf filter slope coefficient, specified as a real scalar in the range 0.1 to 5. Values
outside the range are saturated.

This property is available when you set HasHighShelfFilter to true during
construction.

Tunable: Yes

HighShelfGain — High-shelf filter gain (dB)
0 (default) | real scalar in the range –12 to 12

High-shelf filter gain in dB, specified as a real scalar in the range –12 to 12. Values
outside the range are saturated.

This property is available when you set HasHighShelfFilter to true during
construction.

Tunable: Yes

Lowpass Filter

LowpassCutoff — Lowpass filter cutoff frequency (Hz)
18000 (default) | nonnegative real scalar

3-203

3 System objects in Audio System Toolbox

Lowpass filter cutoff frequency in Hz, specified as a real scalar greater than or equal to 0.

This property is available when you set HasLowpassFilter to true during
construction.

Tunable: Yes

LowpassSlope — Lowpass filter slope (dB/octave)
12 (default) | real scalar in the range [0:6:48]

Lowpass filter slope in dB/octave, specified as a real scalar in the range [0:6:48].
Values that are not multiples of 6 are rounded.

This property is available when you set HasLowpassFilter to true during
construction.

Tunable: Yes

Highpass Filter

HighpassCutoff — Highpass filter cutoff frequency (Hz)
20 (default) | nonnegative real scalar

Highpass filter cutoff in Hz, specified as a real scalar greater than or equal to 0.

This property is available when you set HasHighpassFilter to true during
construction.

Tunable: Yes

HighpassSlope — Highpass filter slope (dB/octave)
30 (default) | real scalar in the range [0:6:48]

Highpass filter slope in dB/octave, specified as a real scalar in the range [0:6:48].
Values that are not multiples of 6 are rounded.

This property is available when you set HasHighpassFilter to true during
construction.

Tunable: Yes

3-204

 multibandParametricEQ System object

Sampling

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes

Methods

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

reset Reset internal states of System object
step Perform multiband parametric equalization
visualize Visualize magnitude response of System

object

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Multiband Parametric Equalization

Create audio file reader and audio device writer System objects™. Use the sample rate of
the reader as the sample rate of the writer. Call setup to reduce the computational load
of initialization in an audio stream loop.

3-205

3 System objects in Audio System Toolbox

frameLength = 512;

fileReader = dsp.AudioFileReader(...

 'Filename','RockDrums-48-stereo-11secs.mp3',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

setup(deviceWriter,ones(frameLength,2));

Construct a three-band parametric equalizer with a high-shelf filter.

mPEQ = multibandParametricEQ(...

 'NumEQBands',3,...

 'Frequencies',[300,1200,5000],...

 'QualityFactors',[1,1,1],...

 'PeakGains',[8,-10,7],...

 'HasHighShelfFilter',true,...

 'HighShelfCutoff',14000,...

 'HighShelfSlope',0.3,...

 'HighShelfGain',-5,...

 'SampleRate',fileReader.SampleRate);

Visualize the magnitude frequency response of your multiband parametric equalizer.

visualize(mPEQ);

3-206

 multibandParametricEQ System object

Play the equalized audio signal. Update the peak gains of your equalizer band to hear the
effect of the equalizer and visualize the changing magnitude response.

count = 0;

while ~isDone(fileReader)

 originalSignal = fileReader();

 equalizedSignal = mPEQ(originalSignal);

 deviceWriter(equalizedSignal);

 if mod(count,100) == 0

 mPEQ.PeakGains(1) = mPEQ.PeakGains(1) - 1.5;

 mPEQ.PeakGains(2) = mPEQ.PeakGains(2) + 1.5;

 mPEQ.PeakGains(3) = mPEQ.PeakGains(3) - 1.5;

 end

 count = count + 1;

 visualize(mPEQ)

3-207

3 System objects in Audio System Toolbox

end

release(fileReader)

release(mPEQ)

release(deviceWriter)

Oversample Audio Signal

Reduce warping by specifying your multibandParametricEQ System object™ to
perform oversampling before equalization.

Create a one-band equalizer. Visualize the equalizer band as its center frequency
approaches the Nyquist rate.

mPEQ = multibandParametricEQ(...

3-208

 multibandParametricEQ System object

 'NumEQBands',1,...

 'Frequencies',9.5e3,...

 'PeakGains',10);

visualize(mPEQ)

for i = 1:1000

 mPEQ.Frequencies = mPEQ.Frequencies + 8;

end

The equalizer band is warped.

Create a one-band equalizer with Oversample set to true. Visualize the equalizer band
as its center frequency approaches the Nyquist rate.

mPEQOversampled = multibandParametricEQ(...

3-209

3 System objects in Audio System Toolbox

 'NumEQBands',1,...

 'Frequencies',9.5e3,...

 'PeakGains',10,...

 'Oversample',true);

visualize(mPEQOversampled)

for i = 1:1000

 mPEQOversampled.Frequencies = mPEQOversampled.Frequencies + 8;

end

3-210

 multibandParametricEQ System object

Warping is reduced.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also

See Also

Blocks
Parametric EQ Filter

Functions
designParamEQ | designShelvingEQ | designVarSlopeFilter

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

3-211

3 System objects in Audio System Toolbox

configureMIDI
System object: multibandParametricEQ

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(mPEQ)

configureMIDI(mPEQ,propName)

configureMIDI(mPEQ,propName,controlNumber)

configureMIDI(mPEQ,propName,controlNumber,'DeviceName',deviceName)

Description

configureMIDI(mPEQ) starts a MIDI configuration user interface (UI). Use the UI to
synchronize tunable properties of the multiband parametric equalizer System object,
mPEQ, to MIDI controls of your choice.

configureMIDI(mPEQ,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(mPEQ,propName,controlNumber) makes the property respond to
the MIDI control specified by controlNumber.

configureMIDI(mPEQ,propName,controlNumber,'DeviceName',deviceName)

makes the property respond to the MIDI control specified by controlNumber on the
device specified by deviceName.

Each tunable property of the multibandParametricEQ System object maps to MIDI
controls with a specified range.

Property Range Unit

Frequencies 20 to 20,000 (log scale) Hz
QualityFactors 0.2 to 700 none
PeakGains –50 to 20 dB

3-212

 configureMIDI

Property Range Unit

LowShelfCutoff 20 to 20,000 (log scale) Hz
LowShelfSlope 0.1 to 5 none
LowShelfGain –12 to 12 dB
HighShelfCutoff 20 to 20,000 (log scale) Hz
HighShelfSlope 0.1 to 5 none
HighShelfGain –12 to 12 dB
LowpassCutoff 20 to 20,000 (log scale) Hz
LowpassSlope 0 to 48 dB/octave
HighpassCutoff 20 to 20,000 (log scale) Hz
HighpassSlope 0 to 48 dB/octave

Introduced in R2016b

3-213

3 System objects in Audio System Toolbox

createAudioPluginClass
System object: multibandParametricEQ

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(mPEQ)

createAudioPluginClass(mPEQ,pluginName)

Description

createAudioPluginClass(mPEQ) creates a System object plugin that implements the
functionality of the multibandParametricEQ System object, mPEQ. The name of the
created class is the multibandParametricEQ System object variable name followed by
'Plugin', for example, mPEQPlugin.

Note: If the object is locked, the number of input and output channels of the plugin is
equal to the number of channels of the object. Otherwise, the number of channels is equal
to 2.

createAudioPluginClass(mPEQ,pluginName) specifies the name of your created
System object plugin class.

Example: createAudioPluginClass(mPEQ,'Equalizer') creates a System object
plugin with class name Equalizer.

Each tunable property of the multibandParametricEQ System object maps to a plugin
parameter with a default range. For vector properties such as Frequencies, each
element of the vector maps to a plugin parameter.

Property Plugin Parameter Range Unit

Frequencies 20 to 20,000 (log mapping) Hz
QualityFactors 0.2 to 700 none

3-214

 createAudioPluginClass

Property Plugin Parameter Range Unit

PeakGains –50 to 20 dB
LowShelfCutoff 20 to 20,000 (log mapping) Hz
LowShelfSlope 0.1 to 5 none
LowShelfGain –12 to 12 dB
HighShelfCutoff 20 to 20,000 (log mapping) Hz
HighShelfSlope 0.1 to 5 none
HighShelfGain –12 to 12 dB
LowpassCutoff 20 to 20,000 (log mapping) Hz
LowpassSlope 0 to 48 dB/octave
HighpassCutoff 20 to 20,000 (log mapping) Hz
HighpassSlope 0 to 48 dB/octave

Introduced in R2016b

3-215

3 System objects in Audio System Toolbox

reset
System object: multibandParametricEQ

Reset internal states of System object

Syntax

reset(mPEQ)

Description

reset(mPEQ) resets internal states of the multiband parametric equalizer, mPEQ, to
their initial values.

Introduced in R2016a

3-216

 step

step
System object: multibandParametricEQ

Perform multiband parametric equalization

Syntax

y = step(mPEQ,x)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

y = step(mPEQ,x) performs multiband parametric equalization on the input signal, x,
and returns the filtered signal, y. The type of equalization is specified by the algorithm
and properties of the multibandParametricEQ System object, mPEQ.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016a

3-217

3 System objects in Audio System Toolbox

visualize
System object: multibandParametricEQ

Visualize magnitude response of System object

Syntax

visualize(mPEQ)

visualize(mPEQ,N)

Description

visualize(mPEQ) plots the magnitude response of the multiband parametric equalizer.
The plot includes any enabled shelving filters, lowpass filters, or highpass filters. The
plot is updated automatically when properties of the object change.

visualize(mPEQ,N) specifies an N-point FFT used to calculate the magnitude response.
The default is 2048.

Introduced in R2016a

3-218

 noiseGate System object

noiseGate System object

Dynamic range gate

Description

The noiseGate System object performs dynamic range gating independently across
each input channel. Dynamic range gating suppresses signals below a given threshold.
It uses specified attack, release, and hold times to achieve a smooth applied gain curve.
Properties of the noiseGate System object specify the type of dynamic range gating.

To perform dynamic range gating on your input:

1 Define and set up your dynamic range gate. See “Construction” on page 3-219.
2 Call step to perform dynamic range gating on each channel of the input signal

according to the properties of your noiseGate object. The input must be a real-
valued, double-precision or single-precision matrix. The noiseGate object treats
each column of the input as an independent channel.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

dRG = noiseGate creates a System object, dRG, that performs dynamic range gating
independently across each input channel.

dRG = noiseGate(thresholdValue) sets the Threshold property to
thresholdValue.

dRG = noiseGate(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

3-219

3 System objects in Audio System Toolbox

Example: dRG = noiseGate('AttackTime',0.01,'SampleRate',16000) creates
a System object, dRG, with the AttackTime property set to 0.01, and the SampleRate
property set to 16000.

Properties

If a property is listed as tunable, then you can change its value even when the object is
locked.

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level below which gain is applied to the input signal.

Tunable: Yes

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the applied gain to rise from 10% to 90% of its final value
when the input goes below the threshold.

Tunable: Yes

ReleaseTime — Release time (s)
0.02 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the applied gain to drop from 90% to 10% of its final
value when the input goes above the threshold.

Tunable: Yes

HoldTime — Hold time (s)
0.05 (default) | real finite scalar

3-220

 noiseGate System object

Hold time in seconds, specified as a real scalar greater than or equal to 0.

Hold time is the period in which the applied gain is held constant before it starts
moving toward its steady-state value. Hold time begins when the input level crosses the
operation threshold.

Tunable: Yes

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes

Methods

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

getMIDIConnections Get MIDI connection information
reset Reset internal states of System object
step Perform dynamic range gating
visualize Visualize static gate characteristics of

System object

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)

3-221

3 System objects in Audio System Toolbox

Common to All System Objects

release Allow System object property value changes

Examples

Gate Audio Signal

Use dynamic range gating to attenuate background noise from an audio signal.

Set up the audio file reader and audio device writer System objects.

frameLength = 1024;

fileReader = dsp.AudioFileReader(...

 'Filename','Counting-16-44p1-mono-15secs.wav',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

Corrupt the audio signal with Gaussian noise. Play the audio.

while ~isDone(fileReader)

 x = fileReader();

 xCorrupted = x + (1e-2/4)*randn(frameLength,1);

 deviceWriter(xCorrupted);

end

release(fileReader);

Set up a dynamic range gate with a threshold of -25 dB, an attack time of 0.01 seconds,
a release time of 0.02 seconds, and a hold time of 0 seconds. Use the sample rate of your
audio file reader.

gate = noiseGate(-25,...

 'AttackTime',0.01,...

 'ReleaseTime',0.02,...

 'HoldTime',0,...

 'SampleRate',fileReader.SampleRate);

Visualize the static characteristic of the gate.

visualize(gate);

3-222

 noiseGate System object

Set up a time scope to visualize the signal before and after dynamic range gating.

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate,...

 'TimeSpanOverrunAction','Scroll',...

 'TimeSpan',16,...

 'BufferLength',1.5e6,...

 'YLimits',[-1 1],...

 'ShowGrid',true,...

 'ShowLegend',true,...

 'Title','Corrupted vs. Gated Audio');

Play the processed audio and visualize it on scope.

while ~isDone(fileReader)

3-223

3 System objects in Audio System Toolbox

 x = fileReader();

 xCorrupted = x + (1e-2/4)*randn(frameLength,1);

 y = gate(xCorrupted);

 deviceWriter(y);

 scope([xCorrupted,y]);

end

release(fileReader)

release(gate)

release(deviceWriter)

release(scope)

3-224

 noiseGate System object

Algorithms

The noiseGate System object processes a signal frame by frame and element by
element.

3-225

3 System objects in Audio System Toolbox

1 The N-point signal, x[n], is converted to magnitude:

x n x n
a
[] []=

2 xa[n] passes through the gain computer. The gain computer uses the static
characteristic properties of the dynamic range gate to determine a brickwall gain for
signal below the threshold:

g x
x T

x Tc a
a lin

a lin

() =
<

≥

Ï
Ì
Ó

0

1

Tlin is the threshold property converted to a linear domain:

T
lin

T
dB

=
Ê
Ë
Á ˆ

¯
˜

10
20

3 The computed gain, gc[n], is smoothed using specified attack, release, and hold time
properties:

g n

g n g n

g n

g n g n

g

s

A s A c

s

R s R c

s

[]

[] () []

[]

[] () []

[

=

- + -

-

- + -

a a

a a

1 1

1

1 1

nn

if C T g n g n

if C T

if C T g n

A H c s

A H

R H c

-

Ï

Ì

Ô
Ô

Ó
Ô
Ô

>() > -()
£

>()
1

1

]

& [] []

& []] []£ -()
£

g n

if C T

s

R H

1

3-226

 noiseGate System object

The attack time coefficient, αA , is calculated as

a A
AFs T

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

The release time coefficient, αR , is calculated as

a
R

RFs T
= -

¥
Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

TA is the attack time period, specified by the AttackTime property. TR is the release
time period, specified by the ReleaseTime property. Fs is the input sampling rate,
specified by the SampleRate property.

CA and CR are hold counters for attack and release, respectively. The limit, TH , is
determined by the HoldTime property.

4 The output of the dynamic range gate is given as

y n x n g n
s

[] [] [].= ¥

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. “Digital Dynamic
Range Compressor Design—A Tutorial And Analysis”. Journal of Audio
Engineering Society. Vol. 60, Issue 6, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

3-227

3 System objects in Audio System Toolbox

See Also

See Also

Blocks
Noise Gate

System Objects
expander | compressor | limiter

Topics
“Dynamic Range Control”

Introduced in R2016a

3-228

 configureMIDI

configureMIDI
System object: noiseGate

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(dRG)

configureMIDI(dRG,propName)

configureMIDI(dRG,propName,controlNumber)

configureMIDI(dRG,propName,controlNumber,'DeviceName',deviceName)

Description

configureMIDI(dRG) starts a MIDI configuration user interface (UI). Use the UI to
synchronize tunable properties of the dynamic range gate System object, dRG, to MIDI
controls of your choice.

configureMIDI(dRG,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(dRG,propName,controlNumber) makes the property respond to the
MIDI control specified by controlNumber.

configureMIDI(dRG,propName,controlNumber,'DeviceName',deviceName)

makes the property respond to the MIDI control specified by controlNumber on the
device specified by deviceName.

Each tunable property of the noiseGate System object maps to MIDI controls with a
specified range.

Property Range Unit

Threshold –140 to 0 dB
AttackTime 0 to 4 seconds
ReleaseTime 0 to 4 seconds

3-229

3 System objects in Audio System Toolbox

Property Range Unit

HoldTime 0 to 4 seconds

Introduced in R2016a

3-230

 createAudioPluginClass

createAudioPluginClass
System object: noiseGate

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(dRG)

createAudioPluginClass(dRG,pluginName)

Description

createAudioPluginClass(dRG) creates a System object plugin that implements
the functionality of the noiseGate System object, dRG. The name of the created class
is the noiseGate System object variable name followed by 'Plugin', for example,
dRGPlugin.

Note: If the object is locked, the number of input and output channels of the plugin is
equal to the number of channels of the object. Otherwise, the number of channels is equal
to 2.

createAudioPluginClass(dRG,pluginName) specifies the name of your created
System object plugin class.

Example: createAudioPluginClass(dRG,'myGate') creates a System object plugin
with class name myGate.

Each tunable property of the noiseGate System object maps to a plugin parameter with
a default range.

Property Plugin Parameter Range Unit

Threshold –140 to 0 dB
AttackTime 0 to 4 s
ReleaseTime 0 to 4 s

3-231

3 System objects in Audio System Toolbox

Property Plugin Parameter Range Unit

HoldTime 0 to 4 s

Introduced in R2016a

3-232

 disconnectMIDI

disconnectMIDI
System object: noiseGate

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(dRG)

Description

disconnectMIDI(dRG) disconnects MIDI controls from your dynamic range gate, dRG.
Only those MIDI connections established using configureMIDI are disconnected.

Introduced in R2016a

3-233

3 System objects in Audio System Toolbox

getMIDIConnections
System object: noiseGate

Get MIDI connection information

Syntax

connectionInfo = getMIDIConnections(dRG)

Description

connectionInfo = getMIDIConnections(dRG) returns a structure,
connectionInfo, containing information about the MIDI connections for your dynamic
range gate, dRG. Only those MIDI connections established using configureMIDI are
returned. The connectionInfo structure contains a substructure for each tunable
property of dRG that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

3-234

 reset

reset
System object: noiseGate

Reset internal states of System object

Syntax

reset(dRG)

Description

reset(dRG) resets internal states of the dynamic range gate, dRG, to their initial values.

Introduced in R2016a

3-235

3 System objects in Audio System Toolbox

step

System object: noiseGate

Perform dynamic range gating

Syntax

y = step(dRG,x)

[y,g] = step(dRG,x)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

y = step(dRG,x) performs dynamic range gating on the input signal, x, and returns
the gated signal, y. The type of dynamic range gating is specified by the algorithm and
properties of the noiseGate System object, dRG.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

[y,g] = step(dRG,x) also returns the gain, in dB, applied at each input sample.

3-236

 step

Introduced in R2016a

3-237

3 System objects in Audio System Toolbox

visualize
System object: noiseGate

Visualize static gate characteristics of System object

Syntax

visualize(dRG)

visualize(dRG,myInputRange)

Y = visualize(___)

Description

visualize(dRG) plots the static gate characteristics of the dynamic range gate, dRG.
The method computes the dB output level for the input range [0:0.001:1] dB. The plot
is updated automatically when properties of the object change.

visualize(dRG,myInputRange) enables you to specify the input range in dB. Specify
myInputRange as a vector of ascending values.

Y = visualize(___) returns the dB output level, Y, corresponding to the input range.
You can use any of the input arguments from previous syntaxes.

Introduced in R2016a

3-238

 octaveFilter System object

octaveFilter System object

Octave-band and fractional octave-band filter

Description

The octaveFilter System object performs octave-band or fractional octave-band
filtering independently across each input channel. An octave-band is a frequency band
where the highest frequency is twice the lowest frequency. Octave-band and fractional
octave-band filters are commonly used to mimic how humans perceive loudness. Octave
filters are best understood when viewed on a logarithmic scale, which models how the
human ear weights the spectrum.

To perform octave-band filtering on your input:

1 Define and set up your octave-band filter. See “Construction” on page 3-239.
2 Call step to perform octave-band filtering on each channel of the input signal

according to the properties of your octaveFilter object. The input must be a real-
valued, double-precision or single-precision matrix. The octaveFilter object treats
each column of the input as an independent channel.

Note: Alternatively, instead of using the step method to perform the operation defined
by the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Construction

octFilt = octaveFilter creates a System object, octFilt, that performs octave-
band filtering independently across each input channel.

octFilt = octaveFilter(centerFreq) sets the CenterFrequency property to
centerFreq.

octFilt = octaveFilter(centerFreq,bw) sets the Bandwidth property to bw.

3-239

3 System objects in Audio System Toolbox

octFilt = octaveFilter(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.

Example: octFilt = octaveFilter(1000,'1/3 octave','SampleRate',96000)
creates a System object, octFilt, with a center frequency of 1000 Hz, a 1/3 octave filter
bandwidth, and a sample rate of 96,000 Hz.

Properties

If a property is listed as tunable, then you can change its value even when the object is
locked.

FilterOrder — Order of octave filter
6 (default) | even integer

Order of the octave filter, specified as an even integer.

Tunable: No

CenterFrequency — Center frequency of octave filter (Hz)
1000 (default) | positive scalar

Center frequency of the octave filter in Hz, specified as a positive scalar.

• The maximum center frequency is the value that causes the upper band edge to be
equal to the Nyquist frequency, Fs/2. Frequencies above this value are saturated.

• The minimum center frequency is the value that causes the lower band edge to
be equal to 1 Hz. Frequencies below this value are quantized to the value that
corresponds to lower band edge equal to 1 Hz.

Tunable: Yes

Bandwidth — Filter bandwidth (octaves)
'1 octave' (default) | '2/3 octave' | '1/2 octave' | '1/3 octave' | '1/6
octave' | '1/12 octave' | '1/24 octave' | '1/48 octave'

Filter bandwidth in octaves, specified as '1 octave', '2/3 octave', '1/2 octave',
'1/3 octave', '1/6 octave', '1/12 octave', '1/24 octave', or '1/48
octave'.

Tunable: Yes

3-240

 octaveFilter System object

Oversample — Oversample toggle
false (default) | true

Oversample toggle, specified as false or true.

• false — The octave filter runs at the input sample rate.
• true — The octave filter runs at two times the input sample rate. Oversampling

minimizes the frequency warping effects introduced by the bilinear transformation.
An FIR halfband interpolator implements oversampling before octave filtering. A
halfband decimator reduces the sample rate back to the input sampling rate after
octave filtering.

Tunable: No

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes

Methods

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

getANSICenterFrequencies Get the list of valid ANSI S1.11-2004 center
frequencies

getFilter Return biquad filter object using octave
filter design

getMIDIConnections Get MIDI connection information
isStandardCompliant Verify filter design is ANSI S1.11-2004

compliant
reset Reset internal states of System object

3-241

3 System objects in Audio System Toolbox

step Apply octave-band filtering
visualize Visualize and validate filter response

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Perform Fractional Octave-Band Filtering

Use the octaveFilter System object™ to design a 1/3 octave-band filter centered at
1000 Hz. Process an audio signal using your octave filter design.

Create an audio file reader System object.

samplesPerFrame = 1024;

reader = dsp.AudioFileReader('Filename',...

 'RockGuitar-16-44p1-stereo-72secs.wav',...

 'SamplesPerFrame',samplesPerFrame,...

 'PlayCount',Inf);

Create an octave filter System object. Use the sample rate of the reader as the sample
rate of the octave filter.

centerFreq = 1000;

bw = '1/3 octave';

Fs = reader.SampleRate;

octFilt = octaveFilter(centerFreq,bw,'SampleRate',Fs);

Visualize the filter response and verify that it fits within the class 0 mask of the ANSI
S1.11-2004 standard.

visualize(octFilt,'class 0');

3-242

 octaveFilter System object

Create a spectrum analyzer to visualize the original audio signal and the audio signal
after octave-band filtering.

scope = dsp.SpectrumAnalyzer(...

 'SampleRate',Fs,...

 'PlotAsTwoSidedSpectrum',false,...

 'FrequencyScale','Log',...

 'FrequencyResolutionMethod','WindowLength',...

 'WindowLength',samplesPerFrame,...

 'Title','Octave-Band Filtering',...

 'ShowLegend',true,...

 'ChannelNames',{'Original signal','Filtered signal'});

Process the audio signal in an audio stream loop. Visualize the filtered audio and the
original audio. As a best practice, release the System objects when complete.

3-243

3 System objects in Audio System Toolbox

tic;

while toc < 20

 x = reader();

 y = octFilt(x);

 scope([x(:,1),y(:,1)]);

end

release(octFilt);

release(scope);

release(reader);

Create Octave-Band Filter Bank

Create an octave-band filter bank that conforms to ANSI S1.11-2004. Pass white noise
through the filter bank and inspect the resulting power in each band.

3-244

 octaveFilter System object

Create an octave filter with default settings. Visualize the filter design and verify that it
conforms to ANSI S1.11-2004 for class 0.

octFilt = octaveFilter;

visualize(octFilt,'class 0');

Get a vector of valid center frequencies, given the center frequency of octFilt. Create
an octave filter bank using the valid center frequencies.

centerFrequencies = getANSICenterFrequencies(octFilt);

for i = 1:11

 octaveFilterBank{i} = octaveFilter(centerFrequencies(i),'FilterOrder',12);

end

3-245

3 System objects in Audio System Toolbox

Use getFilter to return biquad filter objects for each filter in your octave filter bank.
Visualize the octave filter bank with a linear frequency scale.

plotter = fvtool(getFilter(octaveFilterBank{1}),...

 getFilter(octaveFilterBank{2}),...

 getFilter(octaveFilterBank{3}),...

 getFilter(octaveFilterBank{4}),...

 getFilter(octaveFilterBank{5}),...

 getFilter(octaveFilterBank{6}),...

 getFilter(octaveFilterBank{7}),...

 getFilter(octaveFilterBank{8}),...

 getFilter(octaveFilterBank{9}),...

 getFilter(octaveFilterBank{10}),...

 getFilter(octaveFilterBank{11}),...

 'Fs',octaveFilterBank{1}.SampleRate);

Visualize the octave filter bank with a logarithmic frequency scale. The logarithmic
frequency scale makes the center frequencies appear evenly distributed.

3-246

 octaveFilter System object

set(plotter,'FrequencyScale','Log');

Create a white noise signal. By definition, white noise has a flat power spectral density.

whiteNoiseGenerator = dsp.ColoredNoise(0,1024);

whiteNoise = whiteNoiseGenerator();

Pass the white noise signal through the octave-band filter bank.

for i = 1:11

 filteredWhiteNoise(:,i) = octaveFilterBank{i}(whiteNoise);

end

Calculate and plot the power in each octave.

for i = 1:11

 powerPerBand(i) = bandpower(filteredWhiteNoise(:,i));

end

3-247

3 System objects in Audio System Toolbox

bar(powerPerBand);

title('Power Distribution of Octave Band Filter Bank');

set(gca,'XTickLabel',{round(centerFrequencies)})

xlabel('Center Frequency of Octave Band Filter (Hz)')

ylabel('Normalized Power')

The bandpower increases by approximately a factor of two, because the octave bandwidth
increases by a factor of two. The power distribution of an octave filter bank mimics how

3-248

 octaveFilter System object

higher frequencies are percieved louder in white noise. You can use octave filter banks to
weight a spectrum for percieved loudness.

Effect of Center Frequency on Octave-Band Filtering

Process a speech signal using different octave bands from an octave-band filter bank.

Design a 1/2 octave filter with an estimated center frequency of 800 Hz. Use
isStandardCompliant to find the nearest compliant center frequency.

octFilt = octaveFilter(800,'1/2 octave');

[complianceStatus,suggestedCenterFrequency] = isStandardCompliant(octFilt,'class 0')

complianceStatus =

 logical

 0

suggestedCenterFrequency =

 841.3951

Change the center frequency of the octFilt object to the suggested center frequency
returned by isStandardCompliant. Get a list of valid ANSI S1.11-2004 center
frequencies, given your specified octFilt center frequency.

octFilt.CenterFrequency = suggestedCenterFrequency;

Fo = getANSICenterFrequencies(octFilt);

Create an audio file reader and audio device writer.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Create a scope to visualize the filtered and unfiltered signals.

scope = dsp.SpectrumAnalyzer(...

 'PlotAsTwoSidedSpectrum',false,...

 'FrequencyScale','Log',...

3-249

3 System objects in Audio System Toolbox

 'Title','Octave-Band Filtering',...

 'ShowLegend',true,...

 'ChannelNames',{'Original signal','Filtered signal'});

In an audio stream loop, process the audio signal using your octave-band filter. Vary
the center frequency to hear the effect. As a best practice, release your objects after
processing.

index = 12;

octFilt.CenterFrequency = Fo(index);

count = 1;

while ~isDone(fileReader)

 x = fileReader();

 y = octFilt(x);

 scope([x,y])

 deviceWriter(y);

 if mod(count,100)==0

 octFilt.CenterFrequency = Fo(index);

 index = index+1;

 end

 count = count+1;

end

release(scope)

release(deviceWriter)

release(fileReader)

3-250

 octaveFilter System object

Remove Noise from Tone Scale

Remove additive noise from an audio tone scale using an octaveFilter System
object™.

Create audioOscillator and audioDeviceWriter objects with default properties.
Create an octaveFilter object with the center frequency set to 100 Hz.

osc = audioOscillator;

deviceWriter = audioDeviceWriter;

octFilt = octaveFilter(100);

In an audio stream loop, listen to a tone created by your audio oscillator. The tone
contains additive Gaussian noise.

3-251

3 System objects in Audio System Toolbox

for i = 1:400

 x = osc();

 x1 = x + 0.1*randn(512,1);

 deviceWriter(x1);

 if rem(i,100)==0

 osc.Frequency = osc.Frequency*2;

 end

end

Create a spectrum analyzer to view your filtered and unfiltered signals.

scope = dsp.SpectrumAnalyzer(...

 'PlotAsTwoSidedSpectrum',false,...

 'FrequencyScale','Log',...

 'FrequencyResolutionMethod','WindowLength',...

 'Title','Octave-Band Filtering',...

 'ShowLegend',true,...

 'SpectralAverages',10,...

 'ChannelNames',{'Original signal','Filtered signal'});

Reset the frequency of your audio oscillator to its default, 100 Hz.

osc.Frequency = 100;

In an audio stream loop, filter the corrupted tone using your octave-band filter. When the
tone changes frequency in the loop, change the center frequency of your octave filter to
match. As a best practice, release your audio device once done.

for i = 1:400

 x = osc();

 x1 = x + 0.1*randn(512,1);

 x2 = octFilt(x1);

 deviceWriter(x2);

 if rem(i,100)==0

 osc.Frequency = osc.Frequency*2;

 octFilt.CenterFrequency = octFilt.CenterFrequency*2;

 end

 scope([x1,x2]);

end

release(deviceWriter);

3-252

 octaveFilter System object

Definitions

Band Edge

A band edge frequency refers to the lower or upper edge of the passband of a bandpass
filter.

Center Frequency of Octave Filter

The center frequency of an octave filter is the geometric mean of the lower and upper band
edge frequencies.

3-253

3 System objects in Audio System Toolbox

Algorithm

Octave Bandwidth to Band Edge Conversion

The octaveFilter System object uses the specified center frequency and filter
bandwidth in octaves to determine the normalized band edges [2].

First the object normalizes the specified center frequency:

f
CenterFrequency

SampleRatec =
¥2

Then the object computes the band edge frequencies:

f f Gpa c
b

= ¥

-
1

2

f f Gpb c
b

= ¥

1
2

• b is the octave bandwidth specified by the Bandwidth property. For example, if
Bandwidth is specified as '1/3 octave', the value of b is 3.

•
G is a conversion constant: G = 10

3
10

Digital Filter Design

The octaveFilter System object implements a higher-order digital bandpass filter
design method specified in [1].

In this design method, a desired digital bandpass filter maps to a Butterworth lowpass
analog prototype, which is then mapped back to a digital bandpass filter:

3-254

 octaveFilter System object

1 The analog Butterworth filter is expressed as a cascade of second-order sections:

H s H s H s H s H s
K

() () () () () ,= 0 1 2 L where:

•

H s

N K

N K0

0

1 2

1

1
1

2 1()

,

,=

=

+

= +

Ï

Ì
ÔÔ

Ó
Ô
Ô

if

if

W

•
H s

s s

i Ki

i

()

cos

, , ,...,=

- +

=
1

1 2

1 2

0

2

0
2W W

q

•
q

p
i

N
N i i N N= - +() =

2
1 2 1 2 2, , ,..., ,...,

2 The analog Butterworth filter is mapped to a digital filter using a bandpass version
of the bilinear transformation:

s
cz z

z

=
- +

-

- -

-

1

1

1 2

2
,

where

c
pa pb

pa pb

=
+()

+

sin

sin sin
.

w w

w w

3-255

3 System objects in Audio System Toolbox

This mapping results in the following substitution:

W
0

=
-c pb

pb

cos

sin

w

w

3 The analog prototype is evaluated:

H z

s s
i

i

s
cz z

z

()

cos

=

- +

=
- +

-

- -

-

1

1 2
0

2

0
2

1 2

1

1 2

2

W W

q

Because s is second-order in z, the bandpass version of the bilinear transformation is
fourth-order in z.

References

[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ:
Prentice Hall, 2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-
Band and Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004.
Melville: NY, 2009.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

3-256

 octaveFilter System object

See Also

See Also

Blocks
Octave Filter

System Objects
multibandParametricEQ | weightingFilter | dsp.BiquadFilter

Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2016b

3-257

3 System objects in Audio System Toolbox

configureMIDI

System object: octaveFilter

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(octFilt)

configureMIDI(octFilt,propName)

configureMIDI(octFilt,propName,controlNumber)

configureMIDI(octFilt,propName,controlNumber,'DeviceName',

deviceName)

Description

configureMIDI(octFilt) starts a MIDI configuration user interface (UI). Use the UI
to synchronize tunable properties of the octave filter System object, octFilt, to MIDI
control of your choice.

configureMIDI(octFilt,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(octFilt,propName,controlNumber) makes the property respond
to the MIDI control specified by controlNumber.

configureMIDI(octFilt,propName,controlNumber,'DeviceName',

deviceName) makes the property respond to the MIDI control specified by
controlNumber on the device specified by deviceName.

Each tunable property of the octaveFilter System object maps to MIDI controls with a
specified range.

Property Range Mapping

CenterFrequency 3 Hz to 22 kHz log

3-258

 configureMIDI

Property Range Mapping

Bandwidth '1 octave', '2/3
octave', '1/2 octave',
'1/3 octave', '1/6
octave', '1/12 octave',
'1/24 octave', or '1/48
octave'

Your MIDI controller range
is discretized into seven
levels, corresponding to the
seven Bandwidth choices.

Introduced in R2016b

3-259

3 System objects in Audio System Toolbox

createAudioPluginClass

System object: octaveFilter

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(octFilt)

createAudioPluginClass(octFilt,pluginName)

Description

createAudioPluginClass(octFilt) creates a System object plugin that implements
the functionality of the octaveFilter System object, octFilt. The name of the created
class is the octaveFilter System object variable name followed by 'Plugin', for
example, octFiltPlugin.

Note: If the object is locked, the number of input and output channels of the plugin is
equal to the number of channels of the object. Otherwise, the number of channels is equal
to 2.

createAudioPluginClass(octFilt,pluginName) specifies the name of your created
System object plugin class.

Example: createAudioPluginClass(octFilt,'octaveBandFilter') creates a
System object plugin with class name octaveBandFilter.

Each tunable property of the octaveFilter System object maps to a plugin parameter
with a default range.

Property Range Mapping

CenterFrequency 3 Hz to 22 kHz log

3-260

 createAudioPluginClass

Property Range Mapping

Bandwidth '1 octave', '2/3
octave', '1/2 octave',
'1/3 octave', '1/6
octave', '1/12 octave',
'1/24 octave', or '1/48
octave'

enum

Introduced in R2016b

3-261

3 System objects in Audio System Toolbox

disconnectMIDI
System object: octaveFilter

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(octFilt)

Description

disconnectMIDI(octFilt) disconnects MIDI controls from your octave filter,
octFilt. Only those MIDI connections established using configureMIDI are
disconnected.

Introduced in R2016b

3-262

 getANSICenterFrequencies

getANSICenterFrequencies
System object: octaveFilter

Get the list of valid ANSI S1.11-2004 center frequencies

Syntax

centerFrequencies = getANSICenterFrequencies(octFilt)

Description

centerFrequencies = getANSICenterFrequencies(octFilt) returns a vector of
valid center frequencies as specified by the ANSI S1.11-2004 standard.

The range for computing valid center frequencies is 3 Hz to (Fs/2) Hz, where the
SampleRate property of your octave filter defines Fs.

Introduced in R2016b

3-263

3 System objects in Audio System Toolbox

getFilter
System object: octaveFilter

Return biquad filter object using octave filter design

Syntax

biquad = getFilter(octFilt)

Description

biquad = getFilter(octFilt) returns a dsp.BiquadFilter object, biquad. The
SOSMatrix and ScaleValues properties of the biquad filter object are set as specified
by the octaveFilter object, octFilt.

Use getFilter for the design capabilities of the octaveFilter System object and the
processing capabilities of the dsp.BiquadFilter System object.

Introduced in R2016b

3-264

 getMIDIConnections

getMIDIConnections
System object: octaveFilter

Get MIDI connection information

Syntax

connectionInfo = getMIDIConnections(octFilt)

Description

connectionInfo = getMIDIConnections(octFilt) returns a structure,
connectionInfo, containing information about the MIDI connections for your octave
filter, octFilt. Only those MIDI connections established using configureMIDI are
returned. The connectionInfo structure contains a substructure for each tunable
property of octFilt that has established MIDI connections. Each substructure contains
the control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016b

3-265

3 System objects in Audio System Toolbox

isStandardCompliant
System object: octaveFilter

Verify filter design is ANSI S1.11-2004 compliant

Syntax

complianceStatus = isStandardCompliant(octFilt,classType)

[complianceStatus,centerFreq] =

isStandardCompliant(octFilt,classType)

Description

complianceStatus = isStandardCompliant(octFilt,classType) returns a
logical scalar, complianceStatus, indicating whether the octFilt filter design is
compliant with the ANSI S1.11-2004 standard for classType. Specify classType as
'class 0', 'class 1', or 'class 2'.

The mask used to determine compliance is centered on the nearest ANSI-compliant
center frequency that ensures the center frequency of the object falls between the upper
and lower band edges of the mask.

[complianceStatus,centerFreq] =

isStandardCompliant(octFilt,classType) also returns the ANSI-compliant
center frequency used to create the mask.

If your octave filter is noncompliant, try any of the following:

• Set the center frequency to one of the values returned by
getANSICenterFrequencies

• Increase filter order
• Increase sample rate

Introduced in R2016b

3-266

 reset

reset
System object: octaveFilter

Reset internal states of System object

Syntax

reset(octFilt)

Description

reset(octFilt) resets internal states of the octave filter, octFilt, to their initial
values.

Introduced in R2016b

3-267

3 System objects in Audio System Toolbox

step
System object: octaveFilter

Apply octave-band filtering

Syntax

y = step(octFilt,x)

Description

Note: Alternatively, instead of using the step method to perform the operation defined
by the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

y = step(octFilt,x) applies octave-band filtering to the input signal, x, and returns
the filtered signal, y. The type of filtering is specified by the algorithm and properties of
the octaveFilter System object, octFilt.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016b

3-268

 visualize

visualize
System object: octaveFilter

Visualize and validate filter response

Syntax

visualize(octFilt)

visualize(octFilt,N)

visualize(___ ,mType)

Description

visualize(octFilt) plots the magnitude response of the octave-band filter, octFilt.
The plot is updated automatically when properties of the object change.

visualize(octFilt,N) uses an N-point FFT to calculate the magnitude response. The
default is 2048.

visualize(___ ,mType) creates a mask based on the class of filter specified by mType,
using either of the previous syntaxes. Specify mType as 'class 0', 'class 1', or
'class 2'. The mask attenuation limits are defined in the ANSI S1.11-2004 standard.
The mask center frequency is the ANSI standard center frequency, with band edge
frequencies on either side of the CenterFrequency set in octFilt.

• If the mask is green, the design is compliant with the ANSI S1.11-2004 standard.
• If the mask is red, the design breaks compliance.

Introduced in R2016b

3-269

3 System objects in Audio System Toolbox

reverberator System object

Add reverberation to audio signal

Description

The reverberator System object adds reverberation to mono or stereo audio signals.
Properties of the reverberator System object specify the “Reverberation Model” on
page 3-275 used.

To add reverberation to your input:

1 Define and set up your reverberator. See “Construction” on page 3-270.
2 Call step to add reverberation to the input signal according to the properties of your

reverberator object. The input must be a real-valued, double-precision or single-
precision matrix. The input matrix must have one or two columns, corresponding
to a mono or stereo signal, respectively. The output matrix always has two columns
(stereo).

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

reverb = reverberator creates a System object, reverb, that adds artificial
reverberation to an audio signal.

reverb = reverberator(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Example: reverb = reverberator('PreDelay',0.5,'WetDryMix',1) creates
a System object, reverb, with the PreDelay property set to 0.5 and the WetDryMix
property set to 1.

3-270

 reverberator System object

Properties
If a property is listed as tunable, then you can change its value even when the object is
locked.

PreDelay — Pre-delay for reverberation (s)
0 (default) | real positive scalar

Pre-delay for reverberation in seconds, specified as a real scalar in the range 0 to 1.

Pre-delay for reverberation is the time between hearing direct sound and the first early
reflection. The value of PreDelay is proportional to the size of the room being modeled.

Tunable: Yes

HighCutFrequency — Lowpass filter cutoff (Hz)
20000 (default) | real positive scalar

Lowpass filter cutoff in Hz, specified as a real positive scalar in the range 0 to
SampleRate

2

Ê
ËÁ

ˆ
¯̃

.

Lowpass filter cutoff is the –3 dB cutoff frequency for the single-pole lowpass filter at the
front of the reverberator structure. It prevents the application of reverberation to high-
frequency components of the input.

Tunable: Yes

Diffusion — Density of reverb tail
0.5 (default) | real positive scalar

Density of reverb tail, specified as a real positive scalar in the range 0 to 1.

Diffusion is proportional to the rate at which the reverb tail builds in density.
Increasing Diffusion pushes the reflections closer together, thickening the sound.
Reducing Diffusion creates more discrete echoes.

Tunable: Yes

DecayFactor — Decay factor of reverb tail
0.5 (default) | real positive scalar

Decay factor of reverb tail, specified as a real positive scalar in the range 0 to 1.

3-271

3 System objects in Audio System Toolbox

DecayFactor is proportional to the time it takes for reflections to run out of energy. To
model a large room, use a long reverb tail (low decay factor). To model a small room, use
a short reverb tail (high decay factor).

Tunable: Yes

HighFrequencyDamping — High-frequency damping
0.0005 (default) | real scalar

High-frequency damping, specified as a real positive scalar in the range 0 to 1.

HighFrequencyDamping is proportional to the attenuation of high frequencies in the
reverberation output. Setting HighFrequencyDamping to a large value makes high-
frequency reflections decay faster than low-frequency reflections.

Tunable: Yes

WetDryMix — Wet-dry mix
0.3 (default) | real scalar

Wet-dry mix, specified as a real positive scalar in the range 0 to 1.

Wet-dry mix is the ratio of wet (reverberated) to dry (original) signal that your
reverberator System object outputs.

Tunable: Yes

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes

Methods

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

3-272

 reverberator System object

disconnectMIDI Disconnect MIDI controls from System
object

getMIDIConnections Get MIDI connection information
reset Reset internal states of System object
step Add artificial reverberation

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Add Reverberation to Audio Signal

Use the reverberator System object™ to add artificial reverberation to an audio signal
read from a file.

Construct the audio file reader and audio device writer System objects. Use the sample
rate of the reader as the sample rate of the writer.

fileReader = dsp.AudioFileReader(...

 'FunkyDrums-44p1-stereo-25secs.mp3',...

 'SamplesPerFrame',1024);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

Play 10 seconds of the audio signal through your device.

tic

while toc < 10

 audio = fileReader();

 deviceWriter(audio);

end

release(fileReader)

3-273

3 System objects in Audio System Toolbox

Construct a reverberator System object with default settings.

reverb = reverberator

reverb =

 reverberator with properties:

 PreDelay: 0

 HighCutFrequency: 20000

 Diffusion: 0.5000

 DecayFactor: 0.5000

 HighFrequencyDamping: 5.0000e-04

 WetDryMix: 0.3000

 SampleRate: 44100

Construct a time scope to visualize the original audio signal and the audio signal with
added artificial reverberation.

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate,...

 'TimeSpanOverrunAction','Scroll',...

 'TimeSpan',10,...

 'BufferLength',1.5e6,...

 'YLimits',[-1,1],...

 'ShowGrid',true,...

 'ShowLegend',true,...

 'Title','Audio with Reverberation vs. Original');

Play the audio signal with artificial reverberation. Visualize the audio with reverberation
and the original audio.

while ~isDone(fileReader)

 audio = fileReader();

 audioWithReverb = reverb(audio);

 deviceWriter(audioWithReverb);

 scope([audioWithReverb(:,1),audio(:,1)])

end

release(fileReader)

release(deviceWriter)

3-274

 reverberator System object

Definitions

Reverberation Model
Reverberation refers to the buildup and decay of reflected audio waves in a given space.
Reverberation models are used in digital environments to mimic the physical effect of
reverberation.

3-275

3 System objects in Audio System Toolbox

Algorithms

The algorithm to add reverberation follows the plate-class reverberation topology
described in [1] and is based on a 29,761 Hz sample rate.

The algorithm has five stages.

The description for the algorithm that follows is for a stereo input. A mono input is a
simplified case.

Stereo-to-Mono

A stereo signal is converted to a mono signal: x n x n x n
R L

[] . [] []= ¥ +()0 5 .

Preconditioning

A delay followed by a lowpass filter preconditions the mono signal.

• The pre-delay output is determined as x n x n kp[] []= - , where the PreDelay property
determines the value of k.

• The signal is fed through a single-pole lowpass filter with transfer function

3-276

 reverberator System object

LP z

z

() ,=
-

-
-

1

1 1

a

a

where

a p= - ¥
Ê

Ë
Á

ˆ

¯
˜exp .2

f

f

c

s

• fc is the cutoff frequency specified by the HighCutFrequency property.
• fs is the sampling frequency specified by the SampleRate property.

Decorrelation

The signal is decorrelated by passing through a series of four allpass filters.

The allpass filters are of the form

AP z
z

z

k

k
() ,=

+

+

-

-

b

b1

where β is the coefficient specified by the Diffusion property and k is the delay as
follows:

• For AP1, k = 142.
• For AP2, k = 107.
• For AP3, k = 379.
• For AP4, k = 277.

Tank

The signal is fed into the tank, where it circulates to simulate the decay of a
reverberation tail.

3-277

3 System objects in Audio System Toolbox

The following description tracks the signal as it progresses through the top of the tank.
The signal progression through the bottom of the tank follows the same pattern, with
different delay specifications.

1 The new signal enters the top of the tank and is added to the circulated signal from
the bottom of the tank.

2 The signal passes through a modulated allpass filter:

Modulated AP z
z

z

k

k1
1

() =
- +

-

-

-

b

b

• β is the coefficient specified by the Diffusion property.

3-278

 reverberator System object

• k is the variable delay specified by a 1 Hz sinusoid with amplitude =
(8/29761) * SampleRate. To account for fractional delay resulting from the
modulating k, allpass interpolation is used [2].

3 The signal is delayed again, and then passes through a lowpass filter:

LP z

z
2 1

1

1
() =

-

-
-

j

j

• φ is the coefficient specified by the HighFrequencyDamping property.
4 The signal is multiplied by a gain specified by the DecayFactor property. The

signal then passes through an allpass filter:

AP z
z

z

k

k5
1

() .=
+

+

-

-

b

b

• β is the coefficient specified by the Diffusion property.
• k is set to 1800 for the top of the tank and 2656 for the bottom of the tank.

5 The signal is delayed again and then circulated to the bottom half of the tank for the
next iteration.

A similar pattern is executed in parallel for the bottom half of the tank. The output of the
tank is calculated as the signed sum of delay lines picked off at various points from the
tank. The summed output is multiplied by 0.6.

Wet/Dry Mix

The wet (processed) signal is then added to the dry (original) signal:

y n x n x nR R R[] [] [] ,= -() +1 3k k

y n x n x nL L L[] [] [] ,= -() +1 3k k

where the WetDryMix property determines κ. 3-279

3 System objects in Audio System Toolbox

References

[1] Dattorro, Jon. "Effect Design, Part 1: Reverberator and Other Filters." Journal of the
Audio Engineering Society. Vol. 45, Issue 9, pp. 660–684.

[2] Dattorro, Jon. "Effect Design, Part 2: Delay-Line Modulation and Chorus." Journal of
the Audio Engineering Society. Vol. 45, Issue 10, pp. 764–788.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also

See Also

Blocks
Reverberator

Introduced in R2016a

3-280

 configureMIDI

configureMIDI
System object: reverberator

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(reverb)

configureMIDI(reverb,propName)

configureMIDI(reverb,propName,controlNumber)

configureMIDI(reverb,propName,controlNumber,'DeviceName',deviceName)

Description

configureMIDI(reverb) starts a MIDI configuration user interface (UI). Use the UI
to synchronize tunable properties of the reverberator System object, reverb, to MIDI
controls of your choice.

configureMIDI(reverb,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(reverb,propName,controlNumber) makes the property respond to
the MIDI control specified by controlNumber.

configureMIDI(reverb,propName,controlNumber,'DeviceName',deviceName)

makes the property respond to the MIDI control specified by controlNumber on the
device specified by deviceName.

Each tunable property of the reverberator System object maps to MIDI controls with a
specified range.

Property Range Unit

PreDelay 0 to 1 s
HighCutFrequency 20 to 20,000 (log scale) Hz
Diffusion 0 to 1 none

3-281

3 System objects in Audio System Toolbox

Property Range Unit

DecayFactor 0 to 1 none
HighFrequencyDamping 0 to 1 none
WetDryMix 0 to 1 none

Introduced in R2016a

3-282

 createAudioPluginClass

createAudioPluginClass
System object: reverberator

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(reverb)

createAudioPluginClass(reverb,pluginName)

Description

createAudioPluginClass(reverb) creates a System object plugin that implements
the functionality of the reverberator System object, reverb. The name of the created
class is the reverberator System object variable name followed by 'Plugin', for
example, reverbPlugin.

Note: If the object is locked, the number of input channels of the plugin is equal to the
number of channels of the object. Otherwise, the number of channels is equal to 2. The
number of output channels of the plugin is always equal to 2.

createAudioPluginClass(reverb,pluginName) specifies the name of your created
System object plugin class.

Example: createAudioPluginClass(reverb,'concertHall') creates a System
object plugin with class name concertHall.

Each tunable property of the reverberator System object maps to a plugin parameter
with a default range.

Property Plugin Parameter Range Unit

PreDelay 0 to 1 s
HighCutFrequency 20 to 20,000 (log scale) Hz
Diffusion 0 to 1 none

3-283

3 System objects in Audio System Toolbox

Property Plugin Parameter Range Unit

DecayFactor 0 to 1 none
HighFrequencyDamping 0 to 1 none
WetDryMix 0 to 1 none

Introduced in R2016a

3-284

 disconnectMIDI

disconnectMIDI
System object: reverberator

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(reverb)

Description

disconnectMIDI(reverb) disconnects MIDI controls from your reverberator, reverb.
Only those MIDI connections established using configureMIDI are disconnected.

Introduced in R2016a

3-285

3 System objects in Audio System Toolbox

getMIDIConnections
System object: reverberator

Get MIDI connection information

Syntax

connectionInfo = getMIDIConnections(reverb)

Description

connectionInfo = getMIDIConnections(reverb) returns a structure,
connectionInfo, containing information about the MIDI connections for your
reverberator, reverb. Only those MIDI connections established using configureMIDI
are returned. The connectionInfo structure contains a substructure for each tunable
property of reverb that has established MIDI connections. Each substructure contains
the control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

3-286

 reset

reset
System object: reverberator

Reset internal states of System object

Syntax

reset(reverb)

Description

reset(reverb) resets internal states of the reverberator, reverb, to their initial
values.

Introduced in R2016a

3-287

3 System objects in Audio System Toolbox

step
System object: reverberator

Add artificial reverberation

Syntax

y = step(reverb,x)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

y = step(reverb,x) adds artificial reverberation to the input signal, x, and returns
the mixed signal, y. The type of reverberation is specified by the algorithm and
properties of the reverberator System object, reverb.

x must be a real-valued, double-precision or single-precision matrix with one or two
columns. The output is always a stereo signal (two columns).

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016a

3-288

 wavetableSynthesizer System object

wavetableSynthesizer System object

Generate periodic signals from single-cycle waveforms

Description

The wavetableSynthesizer System object generates a periodic signal with tunable
properties. The periodic signal is defined by a single-cycle waveform cached as the
Wavetable property of your wavetableSynthesizer object.

To generate a periodic signal:

1 Define and set up your wavetable synthesizer. See “Construction” on page 3-289.
2 Call step to generate a signal according to the properties of your

wavetableSynthesizer object. The object has internal memory suited to frame-
based processing.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

waveSynth = wavetableSynthesizer creates a wavetable synthesizer System object,
waveSynth, with default property values.

waveSynth = wavetableSynthesizer(wavetableValue) sets the Wavetable
property to wavetableValue.

waveSynth = wavetableSynthesizer(wavetableValue, frequencyValue) sets
the Frequency property to frequencyValue.

waveSynth = wavetableSynthesizer(Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.

3-289

3 System objects in Audio System Toolbox

Example: waveSynth = wavetableSynthesizer('Amplitude',2,'DCOffset',
2.5) creates a System object, waveSynth, that generates sine waveforms using the
default Wavetable (a single-cycle sinusoid), with Amplitude set to 2 and DCOffset set
to 2.5.

Properties

If a property is listed as tunable, then you can change its value even when the object is
locked.

Wavetable — Single-cycle waveform
sin(2*pi*(0:511)/512) (default) | vector of real values

Single-cycle waveform, specified as a vector of real values. The algorithm of the
wavetableSynthesizer indexes into the single-cycle waveform to synthesize a periodic
wave.

Tunable: This property is semi-tunable. You can tune the values of the wavetable when
the object is locked. However, you cannot tune the length of the wavetable when the
object is locked.

Frequency — Frequency of generated signal (Hz)
100 (default) | real scalar

Frequency of generated signal in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes

Amplitude — Amplitude of generated signal
1 (default) | real scalar

Amplitude of generated signal, specified as a real scalar greater than or equal to 0.

The generated signal is multiplied by the value specified by Amplitude at the output,
before DC offset is applied.

Tunable: Yes

PhaseOffset — Normalized phase offset of generated signal
0 (default) | real scalar

3-290

 wavetableSynthesizer System object

Normalized phase offset of generated signal, specified as a real scalar with values in the
range 0 to 1. The range is a normalized 2π radians interval.

Tunable: No

DCOffset — Value added to each element of generated signal
0 (default) | real scalar

Value added to each element of the generated signal, specified as a real scalar.

Tunable: Yes

SamplesPerFrame — Number of samples per frame
512 (default) | positive integer

Number of samples per frame, specified as a positive integer in the range 1 to 192,000.

This property determines the vector length that the step method of your
wavetableSynthesizer object outputs.

Tunable: Yes

SampleRate — Sample rate of generated signal (Hz)
44100 (default) | real positive scalar

Sample rate of generated signal in Hz, specified as a real positive scalar.

Tunable: Yes

OutputDataType — Data type of generated signal
'double' (default) | 'single'

Data type of generated signal, specified as 'double' or 'single'.

Tunable: No

Methods

configureMIDI Configure MIDI connections between
System object and MIDI controller

3-291

3 System objects in Audio System Toolbox

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

getMIDIConnections Get MIDI connection information
reset Reset internal states of System object
step Generate periodic signals from single-cycle

waveforms

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Generate Variable-Frequency Staircase Wave

Define and plot a single-cycle waveform.

values = -1:.1:1;

singleCycleWave = ones(100,1) * values;

singleCycleWave = reshape(singleCycleWave,numel(singleCycleWave),1);

plot(singleCycleWave);

xlabel('Index');

ylabel('Amplitude');

3-292

 wavetableSynthesizer System object

Create a wavetable synthesizer, waveSynth, to generate a staircase wave using the
single-cycle waveform. Specify a frequency of 10 Hz.

waveSynth = wavetableSynthesizer(singleCycleWave,10);

Create a time scope to visualize the staircase wave generated by waveSynth.

scope = dsp.TimeScope(...

 'SampleRate',waveSynth.SampleRate,...

 'TimeSpan',.1,...

 'YLimits',[-1.5,1.5],...

 'TimeSpanOverrunAction', 'Scroll', ...

 'ShowGrid',true,...

 'Title','Variable-Frequency Staircase Wave');

3-293

3 System objects in Audio System Toolbox

Place the wavetable synthesizer in an audio stream loop. Increase the frequency of your
staircase wave in 10 Hz increments.

counter = 0;

while (counter < 1e4)

 counter = counter + 1;

 staircaseWave = waveSynth();

 scope(staircaseWave);

 if mod(counter,1000)==0

 waveSynth.Frequency = waveSynth.Frequency + 10;

 end

end

3-294

 wavetableSynthesizer System object

Manipulate Audio Samples Using Wavetable Synthesizer

Sample an audio file and save it to the Wavetable property of a
wavetableSynthesizer System object™. Use the wavetable synthesizer to manipulate
your audio sample.

3-295

3 System objects in Audio System Toolbox

Read in an entire audio file. Clip out an interesting sound from the audio and then listen
to it.

[audio,fs] = audioread('MainStreetOne-24-96-stereo-63secs.wav');

engine = audio(5.35e6:5.45e6);

sound(engine,fs);

Create a wavetable synthesizer using your audio clip. The duration of the engine
audio clip is numel(engine)/fs seconds. In the wavetableSynthesizer, set the
Frequency property to 1/(clip duration). The generated signal now plays back plays back
at the same rate it was recorded at.

duration = numel(engine)/fs;

waveSynth = wavetableSynthesizer('Wavetable',engine,'SampleRate',fs, ...

 'Frequency',1/duration);

Create an audioDeviceWriter to write to your audio device.

deviceWriter = audioDeviceWriter('SampleRate',fs);

In a loop, play the wavetable synthesizer to your device. After three seconds, begin
increasing the frequency of the wavetable synthesizer. After six seconds, begin
decreasing the frequency of the wavetable synthesizer.

timeElapsed = 0;

while timeElapsed < 9

 audioWave = waveSynth();

 deviceWriter(audioWave);

 if (timeElapsed > 3) && (timeElapsed < 6)

 waveSynth.Frequency = waveSynth.Frequency + 0.001;

 elseif timeElapsed > 6

 waveSynth.Frequency = waveSynth.Frequency - 0.002;

 end

 timeElapsed = timeElapsed + waveSynth.SamplesPerFrame*(1/fs);

end

Modify Wavetable While Stream Processing

Modify the Wavetable property of a wavetableSynthesizer System object™ while
stream processing. Visualize the wavetable and listen to the resulting audio.

3-296

 wavetableSynthesizer System object

Create a single-cycle waveform for the wavetableSynthesizer to index into. Create a
wavetable synthesizer object.

t = 0:0.001:1;

exponent = 5;

waveTable = [t.^exponent,fliplr(t.^exponent)] - 0.5;

waveSynth = wavetableSynthesizer('Wavetable',waveTable);

Create a dsp.ArrayPlot object to plot the wavetable as it is modified over time.
Create an audioDeviceWriter object to listen to the signal output by your wavetable
synthesizer.

arrayPlotter = dsp.ArrayPlot('YLimits',[-1,1],'PlotType','Line');

deviceWriter = audioDeviceWriter;

In an audio stream loop, incrementally modify the Wavetable property of the wavetable
synthesizer and plot it. Call the synthesizer to output a waveform and play the waveform
to your audio device.

tic

while toc < 10

 exponent = exponent - 0.01;

 waveSynth.Wavetable = [t.^abs(exponent),fliplr(t.^abs(exponent))] - 0.5;

 arrayPlotter(waveSynth.Wavetable');

 deviceWriter(waveSynth());

end

release(deviceWriter)

3-297

3 System objects in Audio System Toolbox

Algorithms

The wavetable synthesizer System object synthesizes periodic signals using a cached
single-cycle waveform, specified waveform properties, and phase memory.

3-298

 wavetableSynthesizer System object

1 Compute the increment step size,

increment
Frequency

SampleRate
N= ¥ ,

where N is the number of elements in your wavetable.
2 Compute Wavetable index,

index n
index n increment

index n increment N

if

el
[]

[]

[]
=

- +

- + -

Ï
Ì
Ó

1

1 sse

index n N[]
,

- <1

for 2 £ £n SamplesPerFrame . The PhaseOffset property determines index[n=1].
3 Index into the Wavetable and perform linear interpolation:

w
Wavetable Wavetable index fraction Wavetable inlow

=
-() ¥ +[] [] [1 ddex

Wavetable index Wavetable index fractio

low

high low

]

[] []-()¥ nn Wavetable index

if

else

index N

low

high

+

>Ï
Ì
Ô

ÓÔ []
.

• index floor index nlow = +([])1

• index indexhigh low= + 1

• fraction index floor index= - ()

4 Multiply by Amplitude and add DCOffset.
3-299

3 System objects in Audio System Toolbox

wave w Amplitude DCOffset= ¥ +

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also

See Also

System Objects
audioOscillator

Introduced in R2016a

3-300

 configureMIDI

configureMIDI
System object: wavetableSynthesizer

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(waveSynth)

configureMIDI(waveSynth,propName)

configureMIDI(waveSynth,propName,controlNumber)

configureMIDI(waveSynth,propName,controlNumber,'DeviceName',

deviceName)

Description

configureMIDI(waveSynth) starts a MIDI configuration user interface (UI). Use the
UI to synchronize tunable properties of the wavetableSynthesizer System object,
waveSynth, to MIDI controls of your choice.

configureMIDI(waveSynth,propName) makes the System object property,
propName, respond to any control on the default MIDI device.

configureMIDI(waveSynth,propName,controlNumber) makes the property
respond to the MIDI control specified by controlNumber.

configureMIDI(waveSynth,propName,controlNumber,'DeviceName',

deviceName) makes the property respond to the MIDI control specified by
controlNumber on the device specified by deviceName.

Each tunable property of the wavetableSynthesizer System object maps to MIDI
controls with a specified range.

Property Range Mapping

Frequency 0.1 Hz to 20 kHz log
Amplitude 0 to 10 linear
DCOffset –10 to 10 linear

3-301

3 System objects in Audio System Toolbox

Introduced in R2016a

3-302

 createAudioPluginClass

createAudioPluginClass
System object: wavetableSynthesizer

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(waveSynth)

createAudioPluginClass(waveSynth,pluginName)

Description

createAudioPluginClass(waveSynth) creates a System object source plugin
that implements the functionality of the wavetableSynthesizer System object,
waveSynth. The name of the created class is the wavetableSynthesizer System
object variable name followed by 'Plugin', for example, waveSynthPlugin. By default,
the created class outputs a one-channel (column) matrix.

createAudioPluginClass(waveSynth,pluginName) specifies the name of your
created System object source plugin class.

Example: createAudioPluginClass(waveSynth,'myWavetableSynthesizer')
creates a System object source plugin with class name myWavetableSynthesizer.

Each tunable property of the wavetableSynthesizer System object maps to a plugin
parameter with a default range.

Property Plugin Parameter Range Mapping

Frequency 0.1 Hz to 20 kHz log
Amplitude 0 to 10 linear
DCOffset –10 to 10 linear

Introduced in R2016a

3-303

3 System objects in Audio System Toolbox

disconnectMIDI
System object: wavetableSynthesizer

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(waveSynth)

Description

disconnectMIDI(waveSynth) disconnects MIDI controls from your wavetable
synthesizer, waveSynth. Only those MIDI connections established using
configureMIDI are disconnected.

Introduced in R2016a

3-304

 getMIDIConnections

getMIDIConnections
System object: wavetableSynthesizer

Get MIDI connection information

Syntax

connectionInfo= getMIDIConnections(waveSynth)

Description

connectionInfo= getMIDIConnections(waveSynth) returns a structure,
connectionInfo, containing information about the MIDI connections for your
wavetable synthesizer, waveSynth. Only those MIDI connections established using
configureMIDI are returned. The connectionInfo structure contains a substructure
for each tunable property of waveSynth that has established MIDI connections. Each
substructure contains the control number, the device name of the corresponding MIDI
control, and the property mapping information (mapping rule, minimum value, and
maximum value).

Introduced in R2016a

3-305

3 System objects in Audio System Toolbox

reset
System object: wavetableSynthesizer

Reset internal states of System object

Syntax

reset(waveSynth)

Description

reset(waveSynth) resets internal states of the wavetable synthesizer, waveSynth, to
their initial values.

Introduced in R2016a

3-306

 step

step
System object: wavetableSynthesizer

Generate periodic signals from single-cycle waveforms

Syntax

y = step(waveSynth)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj) and y = obj() perform equivalent operations.

y = step(waveSynth) generates a periodic signal, y. The type of signal is specified
by the algorithm and properties of the wavetableSynthesizer System object,
waveSynth.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

Introduced in R2016a

3-307

3 System objects in Audio System Toolbox

weightingFilter System object

Frequency-weighted filter

Description

The weightingFilter System object performs frequency-weighted filtering
independently across each input channel.

To perform frequency-weighted filtering on your input:

1 Define and set up your frequency-weighted filter. See “Construction” on page
3-308.

2 Call step to perform frequency-weighted filtering on each channel of the input signal
according to the properties of your weightingFilter object. The input must be
a real-valued, double-precision or single-precision matrix. The weightingFilter
object treats each column of the input as an independent channel.

Note: Alternatively, instead of using the step method to perform the operation defined
by the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Construction

weightFilt = weightingFilter creates a System object, weightFilt, that performs
frequency-weighted filtering independently across each input channel.

weightFilt = weightingFilter(weightType) sets the Method property to
weightType.

weightFilt = weightingFilter(weightType,Fs) sets the SampleRate property
to Fs.

weightFilt = weightingFilter(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.

3-308

 weightingFilter System object

Example: weightFilt = weightingFilter('C-
weighting','SampleRate',96000) creates a C-weighting filter with a sample rate of
96,000 Hz.

Properties

If a property is listed as tunable, then you can change its value even when the object is
locked.

Method — Type of weighting
'A-weighting' (default) | 'C-weighting' | 'K-weighting'

Type of weighting, specified as 'A-weighting', 'C-weighting', or 'K-weighting'.
See “Weighting Types” on page 3-321 for more information.

Tunable: No

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes

Methods

createAudioPluginClass Create audio plugin class that implements
functionality of System object

getFilter Return biquad filter object using weighting
filter design

isStandardCompliant Verify filter design is IEC 61672-1:2002
compliant

reset Reset internal states of System object
step Apply frequency-weighted filtering
visualize Visualize and validate filter response

3-309

3 System objects in Audio System Toolbox

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Validate Filter Compliance

Check the compliance status of filter designs and visualize them.

Create an A-weighting filter with a 22.5 kHz sample rate. Verify that the filter is
standard compliant and visualize the filter design.

aWeight = weightingFilter('A-weighting','SampleRate',22500);

complianceStatus = isStandardCompliant(aWeight,'class 1')

visualize(aWeight,'class 1')

complianceStatus =

 logical

 0

3-310

 weightingFilter System object

Change your A-weighting filter sample rate to 44.1 kHz. Verify that the filter is standard
compliant and visualize the filter design.

aWeight.SampleRate = 44100;

complianceStatus = isStandardCompliant(aWeight,'class 1')

visualize(aWeight,'class 1')

complianceStatus =

 logical

 1

3-311

3 System objects in Audio System Toolbox

Perform A-Weighted Filtering

Use the weightingFilter System object™ to design an A-weighted filter, and then
process an audio signal using your frequency-weighted filter design.

Create an audio file reader System object.

samplesPerFrame = 1024;

reader = dsp.AudioFileReader('Filename',...

 'RockGuitar-16-44p1-stereo-72secs.wav',...

 'SamplesPerFrame',samplesPerFrame,...

 'PlayCount',Inf);

Create a weighting filter System object. Use the sample rate of the reader as the sample
rate of the weighting filter.

3-312

 weightingFilter System object

Fs = reader.SampleRate;

weightFilt = weightingFilter('A-weighting', Fs);

Visualize the filter response and verify that it fits within the class 1 mask of the IEC
61672-1:2002 standard.

visualize(weightFilt,'class 1');

Create a spectrum analyzer to visualize the original audio signal and the audio signal
after frequency-weighted filtering.

scope = dsp.SpectrumAnalyzer(...

 'SampleRate',Fs,...

 'PlotAsTwoSidedSpectrum',false,...

3-313

3 System objects in Audio System Toolbox

 'FrequencyScale','Log',...

 'FrequencyResolutionMethod','WindowLength',...

 'WindowLength',samplesPerFrame,...

 'Title','A-Weighted Filtering',...

 'ShowLegend',true,...

 'ChannelNames',{'Original signal','Filtered signal'});

Process the audio signal in an audio stream loop. Visualize the filtered audio and the
original audio. As a best practice, release the System objects when complete.

tic;

while toc < 20

 x = reader();

 y = weightFilt(x);

 scope([x(:,1),y(:,1)]);

end

release(weightFilt);

release(scope);

release(reader);

3-314

 weightingFilter System object

Compare Weighting Types

Compare the A-weighted, C-weighted, and K-weighted filtering of an engine sound.

Create an A-weighting filter, a C-weighting filter, and a K-weighting filter. Visualize the
filters for analysis and comparison.

wF{1} = weightingFilter;

visualize(wF{1})

wF{2} = weightingFilter('C-weighting');

visualize(wF{2})

wF{3} = weightingFilter('K-weighting');

visualize(wF{3})

3-315

3 System objects in Audio System Toolbox

3-316

 weightingFilter System object

3-317

3 System objects in Audio System Toolbox

Create a dsp.AudioFileReader and specify a sound file. Create an
audioDeviceWriter with default properties. In an audio stream loop, play the white
noise, and then listen to it filtered through the A-weighted, C-weighted, and K-weighted
filters, successively.

fileReader = dsp.AudioFileReader('Engine-16-44p1-stereo-20sec.wav');

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

fprintf('No filtering...')

for i = 1:400

 x = fileReader();

 if i==100

 index = 1;

 fprintf('A-weighted filtering...')

 elseif i==200

3-318

 weightingFilter System object

 index = 2;

 fprintf('C-weighted filtering...')

 elseif i==300

 index = 3;

 fprintf('K-weighted filtering...\n')

 end

 if i>99

 y = wF{index}(x);

 else

 y = x;

 end

 deviceWriter(y);

end

release(deviceWriter)

release(fileReader)

No filtering...A-weighted filtering...C-weighted filtering...K-weighted filtering...

Use Weighting Filter Design with Biquad Filter

The weightingFilter object uses second-order sections (SOS) for filtering. To extract
the weighting filter design, use getFilter to return a dsp.BiquadFilter object with
the SOSMatrix and ScaleValues properties set.

Use weightingFilter to create C-weighted and A-weighted filter objects. Use
getFilter to return corresponding dsp.BiquadFilter objects.

cFilt = weightingFilter('C-weighting');

aFilt = weightingFilter('A-weighting');

cSOSFilter = getFilter(cFilt);

aSOSFilter = getFilter(aFilt);

Create an audio file reader and audio device writer for audio input/output. Use the
sample rate of your reader as the sample rate of your writer.

fileReader = dsp.AudioFileReader('JetAirplane-16-11p025-mono-16secs.wav');

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

In an audio stream loop, play the unfiltered signal. Release your file reader so that the
next time you call it, it reads from the beginning of the file.

tic

3-319

3 System objects in Audio System Toolbox

while toc<8

 x = fileReader();

 deviceWriter(x);

end

release(fileReader)

Play the signal processed by the A-weighted filter. Then play the signal processed by the
C-weighted filter. Cache the power in each frame of the original and filtered signals for
analysis. As a best practice, release your file reader and device writer once complete.

y = [];

count = 1;

tic

while ~isDone(fileReader)

 x = fileReader();

 aFiltered = aSOSFilter(x);

 cFiltered = cSOSFilter(x);

 if toc>8

 deviceWriter(cFiltered);

 else

 deviceWriter(aFiltered);

 end

 xPower(count) = var(x);

 aPower(count) = var(aFiltered);

 cPower(count) = var(cFiltered);

 y = [y;x];

 count = count+1;

end

release(fileReader);

release(deviceWriter);

Plot the power of the original signal, the A-weighted signal, and the C-weighted signal
over time.

subplot(2,1,1)

 spectrogram(y,512,256,4096,fileReader.SampleRate,'yaxis');

 title('Original Signal')

subplot(2,1,2)

 t = linspace(0,16.3468,count-1);

 plot(t,xPower,'r',t,aPower,'b',t,cPower,'g')

 legend('Original Signal','A-Weighted','C-Weighted')

 xlabel('Time (s)');

 ylabel('Power');

3-320

 weightingFilter System object

Weighting Types

A-Weighting

The A-curve is a wide bandpass filter centered at 2.5 kHz, with approximately 20 dB
attenuation at 100 Hz and 10 dB attenuation at 20 kHz. A-weighted SPL measurements
of noise level are increasingly found in sales literature for domestic appliances. In most
countries, the use of A-weighting is mandated for the protection of workers against noise-
induced deafness. The ISO and ICOA standards mandate A-weighting for all civil aircraft
noise measurements.

3-321

3 System objects in Audio System Toolbox

The ANSI S1.42.2001 [1] defines this weighting curve. The IEC 61672-1:2002 [2]
standard defines the minimum and maximum attenuation limits for an A-weighting
filter.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio
System Toolbox converts the specified poles and zeros to the digital domain using a
bilinear transform:

C-Weighting

The C-curve is “flat,” but with limited bandwidth: It has –3 dB corners at 31.5 Hz and
8 kHz. C-curves are used in sound level meters for sounds that are louder than those
intended for A-weighting filters.

The ANSI S1.42-2001 [1] defines the C-weighting curve. The IEC 61672-1:2002 [2]
standard defines the minimum and maximum attenuation limits for C-weighting filters.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio
System Toolbox converts the specified poles and zeros to the digital domain using a
bilinear transform:

3-322

 weightingFilter System object

K-Weighting

The K-weighting filter is used for loudness normalization in broadcast. It is composed of
two stages of filtering: a first stage shelving filter and a second stage highpass filter.

The ITU-R BS.1770-4 [3] standard defines this curve.

Assume a second-order filter.

3-323

3 System objects in Audio System Toolbox

The table shows the coefficients for the filters.

First Stage Shelving Coefficients Second Stage Highpass Coefficients

a
1

1 69065929318241= - . a
1

1 99004745483398= - .

a
2

0 73248077421585= . a
2

0 99007225036621= .

b
0

1 53512485958697= . b
0

1 0= .

b
1

2 6916918940638= - . b
1

2 0= - .

b
2

1 19839281085285= . b
2

1 0= .

The coefficients presented by ITU-R BS.1770-4 are defined for 48 kHz. These coefficients
are recomputed for nonstandard sample rates using the algorithm described in [4].

References

[1] Acoustical Society of America. Design Response of Weighting Networks for Acoustical
Measurements. ANSI S1.42-2001. New York, NY: American National Standards
Institute, 2001.

[2] International Electrotechnical Commission. Electroacoustics Sound Level Meters Part
1: Specifications. First Edition. IEC 61672-1. 2002-2005.

[3] International Telecommunication Union. Algorithms to measure audio programme
loudness and true-peak audio level. ITU-R BS.1770-4. 2015.

[4] Mansbridge, Stuart, Saoirse Finn, and Joshua D. Reiss. “Implementation and
Evaluation of Autonomous Multi-track Fader Control.” Paper presented at the
132nd Audio Engineering Society Convention, Budapest, Hungary, 2012.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

3-324

 weightingFilter System object

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also

See Also

Blocks
Weighting Filter

System Objects
multibandParametricEQ | octaveFilter | dsp.BiquadFilter

Topics
“Audio Weighting Filters”
“Sound Pressure Measurement Using Weighting Filters”

Introduced in R2016b

3-325

3 System objects in Audio System Toolbox

createAudioPluginClass
System object: weightingFilter

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(weightFilt)

createAudioPluginClass(weightFilt,pluginName)

Description

createAudioPluginClass(weightFilt) creates a System object plugin that
implements the functionality of the weightingFilter System object, weightFilt. The
name of the created class is the weightingFilter System object variable name followed
by 'Plugin', for example, weightFiltPlugin.

Note: If the object is locked, the number of input and output channels of the plugin is
equal to the number of channels of the object. Otherwise, the number of channels is equal
to 2.

createAudioPluginClass(weightFilt,pluginName) specifies the name of your
created System object plugin class.

Example: createAudioPluginClass(weightFilt,'AweightedFilter') creates a
System object plugin with class name AweightedFilter.

Introduced in R2016b

3-326

 getFilter

getFilter
System object: weightingFilter

Return biquad filter object using weighting filter design

Syntax

biquad = getFilter(weightFilt)

Description

biquad = getFilter(weightFilt) returns a dsp.BiquadFilter object, biquad.
The SOSMatrix and ScaleValues properties of the biquad filter object are set as
specified by the weightingFilter object, weightFilt.

Use getFilter for the design capabilities of the weightingFilter System object and
the processing capabilities of the dsp.BiquadFilter System object.

Introduced in R2016b

3-327

3 System objects in Audio System Toolbox

isStandardCompliant
System object: weightingFilter

Verify filter design is IEC 61672-1:2002 compliant

Syntax

complianceStatus = isStandardCompliant(weightFilt,classType)

complianceStatus =

isStandardCompliant(weightFilt,classType,freqRange)

Description

complianceStatus = isStandardCompliant(weightFilt,classType) returns
a logical scalar, complianceStatus, indicating whether the weightFilt filter design
is compliant with the minimum and maximum attenuation specifications for the
classType design specified in IEC 61672-1:2002. Specify classType as 'class 1' or
'class 2'. You can check compliance for A-weighting and C-weighting filters only.

complianceStatus =

isStandardCompliant(weightFilt,classType,freqRange) specifies the range
of frequencies checked for compliance. Specify freqRange as a two-element vector of
increasing values: [minFreq, maxFreq].

Note: The pole-zero values defined in the ANSI S1.42-2001 standard are used for
designing the A-weighted and C-weighted filters. The pole-zero values are based on
analog filters, so the design can break compliance for lower sample rates. Increase the
sample rate to meet compliance.

Introduced in R2016b

3-328

 reset

reset
System object: weightingFilter

Reset internal states of System object

Syntax

reset(weightFilt)

Description

reset(weightFilt) resets internal states of the octave filter, weightFilt, to their
initial values.

Introduced in R2016b

3-329

3 System objects in Audio System Toolbox

step
System object: weightingFilter

Apply frequency-weighted filtering

Syntax

y = step(weightFilt,x)

Description

Note: Alternatively, instead of using the step method to perform the operation defined
by the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

y = step(weightFilt,x) applies frequency-weighted filtering to the input signal, x,
and returns the filtered signal, y. The type of filtering is specified by the algorithm and
properties of the weightingFilter System object, weightFilt.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016b

3-330

 visualize

visualize
System object: weightingFilter

Visualize and validate filter response

Syntax

visualize(weightFilt)

visualize(weightFilt,N)

visualize(___ ,mType)

Description

visualize(weightFilt) plots the magnitude response of the frequency-weighted
filter, weightFilt. The plot is updated automatically when properties of the object
change.

visualize(weightFilt,N) uses an N-point FFT to calculate the magnitude response.
The default is 2048.

visualize(___ ,mType) creates a mask based on the class of filter specified by mType,
using either of the previous syntaxes. Specify mType as 'class 1' or 'class 2'. The
mask attenuation limits are defined in the IEC 61672-1:2002 standard. The mask is
defined for A-weighting and C-weighting filters only.

• If the mask is green, the design is compliant with the IEC 61672-1:2002 standard.
• If the mask is red, the design breaks compliance.

Note: The pole-zero values defined in the ANSI S1.42-2001 standard are used for
designing the A-weighted and C-weighted filters. The pole-zero values are based on
analog filters, so the design can break compliance for lower sample rates.

Introduced in R2016b

3-331

4

Classes in Audio System Toolbox

4 Classes in Audio System Toolbox

audioPlugin class

Base class for audio plugins

Description

audioPlugin is the base class for audio plugins. In your class definition file, you must
subclass your object from this base class or from the audioPluginSource class, which
inherits from audioPlugin. Subclassing enables you to inherit the attributes necessary
to generate plugins and access Audio System Toolbox functionality.

To inherit from the audioPlugin base class directly, type this syntax as the first line of
your class definition file:

classdef myAudioPlugin < audioPlugin

myAudioPlugin is the name of your object.

For a tutorial on designing audio plugins, see “Design an Audio Plugin”.

Methods

getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Copy Semantics

Handle. To learn how handle classes affect copy operations, see “Object Behavior”
(MATLAB) in the MATLAB documentation.

Examples

Design Valid Audio Plugin

Design a valid basic audio plugin class

4-2

 audioPlugin class

Terminology:

• A valid audio plugin is one that can be deployed in a digital audio workstation (DAW)
environment. To validate it, use the validateAudioPlugin function. To generate it,
use the generateAudioPlugin function.

• A basic audio plugin inherits from the audioPlugin class but not the
matlab.System class.

Define a basic audio plugin class that inherits from audioPlugin.

classdef myAudioPlugin < audioPlugin

end

Add a processing function to your plugin class.

All valid audio plugins include a processing function. For basic audio plugins, the
processing function is named process. The processing function is where audio
processing occurs. It always has an output.

classdef myAudioPlugin < audioPlugin

 methods

 function out = process(~,in)

 out = in;

 end

 end

end

Design Valid Audio Plugin That Uses getSampleRate

Design an audioPlugin class that uses the getSampleRate method to get the sample
rate at which the plugin is run. The plugin in this example, simpleStrobe, uses the
sample rate to determine a constant 50 ms strobe period.

classdef simpleStrobe < audioPlugin

 % simpleStrobe Add audio strobe effect

 % Add a strobe effect by gain switching between 0 and 1 in

 % 50 ms increments. Although the input sample rate can change,

 % the strobe period remains constant.

 %

 % simpleStrobe properties:

 % period - Number of samples between gain switches

 % gain - Gain multiplier, one or zero

4-3

4 Classes in Audio System Toolbox

 % count - Number of samples since last gain switch

 %

 %

 % simpleStrobe methods:

 % process - Multiply input frame by gain, element by element

 % reset - Reset count and gain to initial conditions

 % and get sample rate

 properties

 Period = 44100*0.05;

 Gain = 1;

 end

 properties (Access = private)

 Count = 1;

 end

 methods

 function out = process(plugin,in)

 for i = 1:size(in,1)

 if plugin.Count == plugin.Period

 plugin.Gain = 1 - plugin.Gain;

 plugin.Count = 1;

 end

 in(i,:) = in(i,:)*plugin.Gain;

 plugin.Count = plugin.Count + 1;

 end

 out = in;

 end

 function reset(plugin)

 plugin.Period = floor(getSampleRate(plugin)*0.05);

 plugin.Count = 1;

 plugin.Gain = 1;

 end

 end

end

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4-4

 audioPlugin class

See Also

See Also

Classes
audioPluginSource

Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Topics
“Design an Audio Plugin”
“Audio Plugin Example Gallery”
“Hierarchies of Classes — Concepts” (MATLAB)

Introduced in R2016a

4-5

4 Classes in Audio System Toolbox

getSampleRate
Class: audioPlugin

Get sample rate at which the plugin is run

Syntax

sampleRate = getSampleRate(myAudioPlugin)

Description

sampleRate = getSampleRate(myAudioPlugin) returns the sample rate in Hz at
which the plugin is being run.

• In a digital audio workstation (DAW) environment, the DAW user sets the sample
rate. getSampleRate interacts with the DAW to determine the sample rate.

• In the MATLAB environment, getSampleRate returns the value set by a previous
call to setSampleRate. If setSampleRate has not been called, getSampleRate
returns the default value, 44100.

Introduced in R2016a

4-6

 setSampleRate

setSampleRate
Class: audioPlugin

Set sample rate at which the plugin is run

Syntax

setSampleRate(myAudioPlugin,sampleRate)

Description

setSampleRate(myAudioPlugin,sampleRate) sets the sample rate of the plugin,
myAudioPlugin, to the value specified by sampleRate. Specify sampleRate as a
positive real integer. setSampleRate enables the MATLAB environment to mimic
behavior in a digital audio workstation (DAW) environment.

Note: A plugin must not call setSampleRate on itself. If the plugin attempts to call
setSampleRate on itself, generateAudioPlugin throws an error.

Introduced in R2016a

4-7

4 Classes in Audio System Toolbox

audioPluginSource class

Base class for audio source plugins

Description

audioPluginSource is the base class for audio source plugins. Use audio source plugins
to produce audio signals.

To create a valid audio source plugin, in your class definition file, subclass your
object from the audioPluginSource class. Subclassing enables you to inherit the
attributes necessary to generate audio source plugins and access Audio System Toolbox
functionality. To inherit from the audioPluginSource base class directly, type this
syntax as the first line of your class definition file:

classdef myAudioSourcePlugin < audioPluginSource

myAudioSourcePlugin is the name of your object.

Methods

getSamplesPerFrame Get frame size returned by the plugin
setSamplesPerFrame Set frame size returned by the plugin

(MATLAB environment only)

Inherited Methods

getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Copy Semantics

Handle. To learn how handle classes affect copy operations, see “Object Behavior”
(MATLAB) in the MATLAB documentation.

4-8

 audioPluginSource class

Examples

Design Valid Audio Plugin

Design a valid basic audio source plugin class

Terminology:

• A valid audio source plugin is one that can be deployed in a digital audio workstation
(DAW) environment. To validate it, use the validateAudioPlugin function. To
generate it, use the generateAudioPlugin function.

• A basic audio source plugin inherits from the audioPluginSource class but not the
matlab.System class.

Define a basic audio source plugin class that inherits from audioPluginSource.

classdef myAudioSourcePlugin < audioPluginSource

end

Add a processing function to your audio source plugin class.

All valid audio source plugins include a processing function. For basic audio source
plugins, the processing function is named process. The processing function defines the
audio signal that your plugin outputs. Audio source plugins do not accept audio signals
as input to the processing function.

The default audio plugin interface assumes a stereo output. Specify the processing output
as a matrix with two columns. These columns correspond to the left and right channels of
a stereo signal. The number of rows in the output matrix correspond to the frame size.

The output frame size must match the frame size of the environment in which the
plugin is run. A DAW environment has variable frame size. To determine the current
environment frame size, call getSamplesPerFrame in the process function.

classdef myAudioSourcePlugin < audioPluginSource

 methods

 function out = process(plugin)

 out = 0.5*randn(getSamplesPerFrame(plugin),2);

 end

 end

end

4-9

4 Classes in Audio System Toolbox

myAudioSourcePlugin generates a Gaussian white noise audio signal with 0.5
standard deviation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

See Also

Classes
audioPlugin

Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Topics
“Design an Audio Plugin”
“Audio Plugin Example Gallery”
“Hierarchies of Classes — Concepts” (MATLAB)

Introduced in R2016a

4-10

 getSamplesPerFrame

getSamplesPerFrame
Class: audioPluginSource

Get frame size returned by the plugin

Syntax

frameSize = getSamplesPerFrame(myAudioSourcePlugin)

Description

frameSize = getSamplesPerFrame(myAudioSourcePlugin) returns the frame size
at which the plugin is run. frameSize is the number of output samples (rows) that the
current call to the processing function of myAudioSourcePlugin must return.

• In a digital audio workstation (DAW) environment, getSamplesPerFrame interacts
with the DAW to determine the frame size. Frame size can vary from call to call, as
determined by the DAW environment.

• In the MATLAB environment, getSamplesPerFrame returns the value set by a
previous call to the setSamplesPerFrame method. If setSamplesPerFrame has not
been called, then getSamplesPerFrame returns the default value, 256.

Note: When authoring source plugins in MATLAB, getSamplesPerFrame is valid only
when called in the processing function.

Introduced in R2016a

4-11

4 Classes in Audio System Toolbox

setSamplesPerFrame
Class: audioPluginSource

Set frame size returned by the plugin (MATLAB environment only)

Syntax

setSamplesPerFrame(myAudioSourcePlugin,frameSize)

Description

setSamplesPerFrame(myAudioSourcePlugin,frameSize) sets the frame size
(rows) that the source plugin, myAudioSourcePlugin, must return in subsequent calls
to its processing function. Specify frameSize as a real integer greater than or equal to 0.
setSamplesPerFrame enables the MATLAB environment to mimic behavior in a digital
audio workstation (DAW) environment.

Note: Do not use setSamplesPerFrame in a generated plugin. If you call
setSamplesPerFrame in your authored plugin, generateAudioPlugin throws an
error.

Introduced in R2016a

4-12

 externalAudioPlugin class

externalAudioPlugin class

Base class for external audio plugins

Description
externalAudioPlugin is the base class for hosted audio plugins. When you load an
external plugin using loadAudioPlugin, an object of that plugin is created having
externalAudioPlugin or externalAudioPluginSource as a base class. The
externalAudioPluginSource class is used when the external audio plugin is a source
plugin.

For a tutorial on hosting audio plugins, see “Host External Audio Plugins”.

Methods
dispParameter Display information of single or multiple

parameters
getParameter Get normalized value and information

about parameter
info Get information about hosted plugin
process Process audio stream
setParameter Set normalized parameter value of hosted

plugin

Inherited Methods

getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Copy Semantics
Handle. To learn how handle classes affect copy operations, see “Object Behavior”
(MATLAB) in the MATLAB documentation.

4-13

4 Classes in Audio System Toolbox

Examples

Specify Hosted Plugin Parameter Values

Load a VST audio plugin into MATLAB® by specifying its full path. If you are using a
Mac, replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');

hostedPlugin = loadAudioPlugin(pluginPath)

hostedPlugin =

 VST plugin 'ParametricEQ' 2 in, 2 out

 Parameter Value Display

 1 Low Peak Gain: 0.5000 0.000 dB

 2 Low Center Frequency: 0.2330 100.000 Hz

 3 Low Q Factor: 0.2822 2.000

 4 Medium Peak Gain: 0.5000 0.000 dB

 5 Medium Center Frequency: 0.5663 1000.000 Hz

 4 parameters not displayed. Use dispParameter(hostedPlugin) to see all 9 params.

Use info to return information about the hosted plugin.

info(hostedPlugin)

ans =

 struct with fields:

 PluginName: 'ParametricEQ'

 Format: 'VST'

 InputChannels: 2

 OutputChannels: 2

 NumParams: 9

 PluginPath: 'E:\jobarchive\Bdoc16b\2016_07_05_h07m05s16_job410158_...'

 VendorName: ''

 VendorVersion: 'V1.0.0'

 UniqueId: 'MWap'

4-14

 externalAudioPlugin class

Use setParameter to change the normalized value of the Medium Center Frequency
parameter to 0.75. Specify the parameter by its index.

setParameter(hostedPlugin,5,0.75)

When you set the normalized parameter value, the parameter display value is
automatically updated. The normalized parameter value generally corresponds to the
position of a UI widget or MIDI controller. The parameter display value typically reflects
the value used internally for processing.

Use dispParameter to display the updated table of parameters.

dispParameter(hostedPlugin)

 Parameter Value Display

 1 Low Peak Gain: 0.5000 0.000 dB

 2 Low Center Frequency: 0.2330 100.000 Hz

 3 Low Q Factor: 0.2822 2.000

 4 Medium Peak Gain: 0.5000 0.000 dB

 5 Medium Center Frequency: 0.7500 3556.559 Hz

 6 Medium Q Factor: 0.2822 2.000

 7 High Peak Gain: 0.5000 0.000 dB

 8 High Center Frequency: 0.8997 10000.000 Hz

 9 High Q Factor: 0.2822 2.000

Alternatively, you can use getParameter to return the normalized value of a single
parameter.

parameterIndex = 5;

parameterValue = getParameter(hostedPlugin,parameterIndex)

parameterValue =

 0.7500

Run External Plugin in MATLAB

Load a VST audio plugin into MATLAB™ by specifying its full path. If you are using a
Mac, replace the .dll file extension with .vst.

pluginPath = ...

4-15

4 Classes in Audio System Toolbox

 fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');

hostedPlugin = loadAudioPlugin(pluginPath);

Create input and output objects for an audio stream loop that reads from a file and
writes to your audio device. Set the sample rate of the hosted plugin to the sample rate of
the input to the plugin.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

setSampleRate(hostedPlugin,fileReader.SampleRate);

Set the normalized value of the Medium Peak Gain parameter value to zero.

parameterValue = 0;

setParameter(hostedPlugin,'Medium Peak Gain',parameterValue)

Use the hosted plugin to process the audio file in an audio stream loop. Sweep the
medium peak gain upward in the loop to hear the effect.

while parameterValue < 0.995

 parameterValue = parameterValue + 0.001;

 setParameter(hostedPlugin,'Medium Peak Gain',parameterValue);

 x = fileReader();

 y = process(hostedPlugin,x);

 deviceWriter(y);

end

release(fileReader)

release(deviceWriter)

See Also

See Also

Functions
loadAudioPlugin

Classes
audioPlugin | audioPluginSource | externalAudioPluginSource

Topics
“Host External Audio Plugins”

4-16

 externalAudioPlugin class

“Hierarchies of Classes — Concepts” (MATLAB)

Introduced in R2016b

4-17

4 Classes in Audio System Toolbox

dispParameter

Class: externalAudioPlugin

Display information of single or multiple parameters

Syntax

dispParameter(hostedPlugin)

dispParameter(hostedPlugin,parameter)

Description

dispParameter(hostedPlugin) displays all parameters and associated indices,
values, displayed values, and display labels. For example:

dispParameter(hostedPlugin)

 Parameter Value Display

 1 Wet: 1.0000 +0.0 dB

 2 Dry: 1.0000 +0.0 dB

 3 1: Enabled: 1.0000 ON

 4 1: Length: 0.0000 0.0 ms

 5 1: Length: 0.0156 4.00 8N

 6 1: Feedback: 0.0000 -inf dB

 7 1: Lowpass: 1.0000 20000 Hz

 8 1: Hipass: 0.0000 0 Hz

 9 1: Resolution: 1.0000 24 bits

 10 1: Stereo width: 1.0000 1.00

 11 1: Volume: 1.0000 +0.0 dB

 12 1: Pan: 0.5000 0.0 %

The Value column corresponds to the normalized parameter value. Generally, the
normalized parameter value represents the position of a UI widget or MIDI controller.
The Display column corresponds to an internal parameter value used for processing.
The Value and Display are related by an unknown mapping that is internal to the
hosted plugin.

4-18

 dispParameter

dispParameter(hostedPlugin,parameter) displays a subset of parameters. You
can specify a parameter by its name as a character vector, or as a vector of one or more
parameter indices. For example:

• dispParameter(hostedPlugin,'Gain') displays information about the 'Gain'
parameter of hostedPlugin.

• dispParameter(hostedPlugin,[1,3]) displays information about parameters
specified by indices 1 and 3.

Introduced in R2016b

4-19

4 Classes in Audio System Toolbox

getParameter
Class: externalAudioPlugin

Get normalized value and information about parameter

Syntax

value = getParameter(hostedPlugin,parameter)

[value, parameterInformation] = getParameter(hostedPlugin,parameter)

Description

value = getParameter(hostedPlugin,parameter) returns the normalized value
of the parameter of hostedPlugin. You can specify a parameter by its name as a
character vector or by its index. For example:

• getParameter(hostedPlugin,'Gain') returns the normalized value of the
hosted plugin parameter named 'Gain'. If the parameter name is not unique,
getParameter returns an error.

• getParameter(hostedPlugin,2) returns information about the parameter
specified by index 2.

[value, parameterInformation] = getParameter(hostedPlugin,parameter)

returns a structure containing additional information about the specified parameter of
the hosted plugin.

Field Description

DisplayName Display name or prompt of the plugin parameter, returned as a
character vector. The display name is intended for display on the
plugin’s user interface (UI).

DisplayValue Display value of the plugin parameter, returned as a character
vector. The parameter DisplayValue corresponds to the normalized
parameter value by an unknown mapping internal to the hosted
plugin. Generally, the display value reflects the value used internally
by the plugin for processing, while the normalized parameter value
corresponds to the position of a MIDI control or widget on a UI.

4-20

 getParameter

Field Description

Label Label intended for display with DisplayValue on the plugin’s UI,
returned as a character vector. Typical labels include dB and Hz.

Introduced in R2016b

4-21

4 Classes in Audio System Toolbox

info
Class: externalAudioPlugin

Get information about hosted plugin

Syntax

pluginInfo = info(hostedPlugin)

Description

pluginInfo = info(hostedPlugin) returns a structure containing information
about the hosted plugin.

Field Description

PluginName Display name of plugin.
Format Software interface. Supported formats include VST and VST3.
InputChannelsNumber of channels passed to the processing function of the plugin.
OutputChannelsNumber of channels returned from the processing function of the

plugin.
NumParams Total number of plugin parameters.
PluginPath Path specified when plugin is loaded using loadAudioPlugin.
VendorName Name of the plugin creator.
VendorVersionVersion number. Typically used to track plugin releases.
UniqueID Unique identifier of plugin used for recognition in certain digital audio

workstation (DAW) environments.

Introduced in R2016b

4-22

 process

process
Class: externalAudioPlugin

Process audio stream

Syntax

audioOut = process(hostedPlugin,audioIn)

Description

audioOut = process(hostedPlugin,audioIn) returns an audio signal processed
according to the algorithm and parameters of hostedPlugin. For source plugins, call
process without an audio input. Use info(hostedPlugin) to determine the number
of channels (columns) of the input and output audio signal.

Use setSamplesPerFrame(hostedPlugin) to specify the frame size returned by
hosted source plugins.

Introduced in R2016b

4-23

4 Classes in Audio System Toolbox

setParameter
Class: externalAudioPlugin

Set normalized parameter value of hosted plugin

Syntax

setParameter(hostedPlugin,parameter,newValue)

Description

setParameter(hostedPlugin,parameter,newValue) sets the normalized value
corresponding to the parameter of hostedPlugin to newValue. Specify the parameter
by its unique display name or its index. Specify the new normalized parameter value as a
scalar in the range 0–1.

For example, assume hostedPlugin has a parameter with index 3 and a unique display
name, 'Gain'. These commands are identical:

• setParameter(hostedPlugin,'Gain',0.2)

• setParameter(hostedPlugin,3,0.2)

Note: A hosted plugin might quantize its parameters. The result of setParameter for
quantized parameters depends on the type of quantization.

Introduced in R2016b

4-24

 externalAudioPluginSource class

externalAudioPluginSource class

Base class for external audio source plugins

Description

externalAudioPluginSource is the base class for hosted audio source plugins. When
you load an external plugin using loadAudioPlugin, an object of that plugin is created
having externalAudioPlugin or externalAudioPluginSource as a base class. The
externalAudioPluginSource class is used when the external audio plugin is a source
plugin.

For a tutorial on hosting audio plugins, see “Host External Audio Plugins”.

Methods

Inherited Methods

dispParameter Display information of single or multiple
parameters

getParameter Get normalized value and information
about parameter

info Get information about hosted plugin
process Process audio stream
setParameter Set normalized parameter value of hosted

plugin

getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

getSamplesPerFrame Get frame size returned by the plugin
setSamplesPerFrame Set frame size returned by the plugin

(MATLAB environment only)

4-25

4 Classes in Audio System Toolbox

Copy Semantics

Handle. To learn how handle classes affect copy operations, see “Object Behavior”
(MATLAB) in the MATLAB documentation.

Examples

Specify Hosted Source Plugin Parameter Values

Load a VST audio source plugin into MATLAB® by specifying its full path. If you are
using a Mac, replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/oscillator.dll');

hostedSourcePlugin = loadAudioPlugin(pluginPath)

hostedSourcePlugin =

 VST plugin 'oscillator' source, 1 out, 256 samples

 Parameter Value Display

 1 Frequency: 0.5659 100.000 Hz

 2 Amplitude: 0.1000 1.000 AU

 3 DC Offset: 0.5000 0.000 AU

Use info to return information about the hosted plugin.

info(hostedSourcePlugin)

ans =

 struct with fields:

 PluginName: 'oscillator'

 Format: 'VST'

 InputChannels: 0

 OutputChannels: 1

 NumParams: 3

 PluginPath: 'E:\jobarchive\Bdoc16b\2016_07_05_h07m05s16_job410158_...'

 VendorName: ''

 VendorVersion: 'V1.0.0'

4-26

 externalAudioPluginSource class

 UniqueId: 'MWap'

Use setParameter to change the normalized value of the Frequency parameter to 0.8.
Specify the parameter by its index.

setParameter(hostedSourcePlugin,1,0.8)

When you set the normalized parameter value, the parameter display value is
automatically updated. Generally, the normalized parameter value corresponds to the
position of a UI widget or MIDI controller. The parameter display value typically reflects
the value used internally by the plugin for processing.

Use dispParameter to display the updated table of parameters.

dispParameter(hostedSourcePlugin)

 Parameter Value Display

 1 Frequency: 0.8000 1741.101 Hz

 2 Amplitude: 0.1000 1.000 AU

 3 DC Offset: 0.5000 0.000 AU

Alternatively, you can use getParameter to return the normalized value of a single
parameter.

getParameter(hostedSourcePlugin,1)

ans =

 0.8000

Run External Source Plugin in MATLAB

Load a VST audio source plugin into MATLAB™ by specifying its full path. If you are
using a Mac, replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','oscillator.dll');

hostedSourcePlugin = loadAudioPlugin(pluginPath);

Set the normalized value of the Amplitude parameter to 0.05. Set the normalized value
of the Frequency parameter to 0.8.

4-27

4 Classes in Audio System Toolbox

setParameter(hostedSourcePlugin,'Amplitude',0.05);

frequencyParameterValue = 0.8;

setParameter(hostedSourcePlugin,'Frequency',frequencyParameterValue);

Set the sample rate at which to run the plugin. Create an output object to write to your
audio device.

setSampleRate(hostedSourcePlugin,44100);

deviceWriter = audioDeviceWriter('SampleRate',44100);

Use the hosted source plugin to output an audio stream. The processing in the audio
stream loop ramps the frequency parameter down and then up.

k = 1;

for i = 1:1000

 frequencyParameterValue = frequencyParameterValue - 0.0004*k;

 setParameter(hostedSourcePlugin,'Frequency',frequencyParameterValue);

 y = process(hostedSourcePlugin);

 deviceWriter(y);

 if i == 500

 k = -1;

 end

end

release(deviceWriter)

See Also

See Also

Functions
loadAudioPlugin

Classes
audioPlugin | audioPluginSource | externalAudioPlugin

Topics
“Host External Audio Plugins”
“Hierarchies of Classes — Concepts” (MATLAB)

Introduced in R2016b

4-28

5

Blocks in Audio System Toolbox

5 Blocks in Audio System Toolbox

Audio Device Reader
Record from sound card
Library: Audio System Toolbox / Sources

Description

The Audio Device Reader block reads audio samples using your computer's audio device.
The Audio Device Reader block specifies the driver, the device and its attributes, and the
data type and size output from your Audio Device Reader block.

Ports

Output

A — Output signal
scalar | vector | matrix

The output of the Audio Device Reader block is determined by the block’s parameters. If
the block output is a matrix, the columns correspond to independent channels.
Data Types: single | double | int16 | int32 | uint8

O — Number of samples overrun
scalar

5-2

 Audio Device Reader

This port outputs the number of samples overrun while acquiring a frame of data (one
output matrix).

Dependencies

To enable this port, select the Output number of samples overrun parameter.
Data Types: uint32

Parameters

Main Tab

Driver — Driver used to access your audio device
DirectSound (default) | ASIO | WASAPI

• ASIO drivers do not come pre-installed on Windows machines. To use the ASIO driver
option, install an ASIO driver outside of MATLAB.

Note: If Driver is set to ASIO, open the ASIO UI outside of MATLAB to set the sound
card buffer size to the value specified by the Samples per frame parameter. See the
documentation of your ASIO driver for more information.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and
WASAPI drivers, set Sample rate (Hz) to a sample rate supported by your audio device.

This parameter applies only on Windows machines. Linux machines always use the
ALSA driver. Mac machines always use the CoreAudio driver.

Device — Device used to acquire audio samples
default audio device (default)

The device list is populated with devices available on your computer.

Info — View information about your audio input configuration
button

5-3

5 Blocks in Audio System Toolbox

This button opens a dialog box that lists your selected audio driver, the full name of your
audio device, and the maximum input channels for your configuration. For example:

Sample rate (Hz) — Sample rate your device uses to acquire audio data
44100 (default) | integer

The possible range of Sample rate (Hz) depends on your audio hardware.

Number of channels — Number of channels acquired by your audio device
1 (default) | integer

The number of input channels is also the number of channels (matrix columns) output by
the Audio Device Reader block.

Dependencies

To specify which input channels your audio device acquires, on the Advanced tab, select
the Use default mapping between sound card’s input channels and columns of
output of this block parameter.

Samples per frame — Frame size read from audio device
1024 (default) | integer

Samples per frame is also the device buffer size, and the frame size (number of matrix
rows) output by the Audio Device Reader block.

Advanced Tab

Device bit depth — Data type used by device to acquire audio data
16-bit integer (default) | 8-bit integer | 16-bit integer | 24-bit integer
| 32-bit integer

5-4

 Audio Device Reader

Use default mapping between sound card’s input channels and columns

of output of this block — Toggle channel mapping source
on (default) | off

When you select this parameter, the block uses the default mapping between the sound
card’s input channels and the matrix columns output by this block. When you clear this
parameter, you specify the mapping in Device input channels.

Device input channels — Specify nondefault channel mapping
[1:MaximumInputChannels] (default) | scalar | vector

Nondefault map of device channels and matrix output by the Audio Device Reader block,
specified as a scalar or vector. For example:

If Device input channels is specified as 1:3, then:

• Channel 1 maps to the first column of the output matrix.
• Channel 2 maps to the second column of the output matrix.
• Channel 3 maps to the third column of the output matrix.

If Device input channels is specified as [3,1,2], then:

• Channel 3 maps to the first column of the output matrix.
• Channel 1 maps to the second column of the output matrix.
• Channel 2 maps to the third column of the output matrix.

Dependencies

To specify a nondefault mapping, clear the Use default mapping between sound
card’s input channels and columns of output of this block parameter.

Output number of samples overrun — Specify additional output port for number of
samples overrun
off (default) | on

When you select this parameter, an additional output port, O, is added to the block.
The O port outputs the number of samples overrun while acquiring a frame of data (one
output matrix).

5-5

5 Blocks in Audio System Toolbox

Output data type — Data type output from block
double (default) | single | int32 | int16 | uint8

Model Examples

See Also

See Also

System Objects
audioDeviceReader | audioDeviceWriter

Blocks
Audio Device Writer

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”
“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2016a

5-6

 Audio Device Writer

Audio Device Writer
Play to sound card
Library: Audio System Toolbox / Sinks

Description

The Audio Device Writer block writes audio samples to an audio output device.

Parameters of the Audio Device Writer block specify the driver, the device, and device
attributes such as sample rate and bit depth.

Ports

Input

Port_1 — Input signal
scalar | vector | matrix

If input to the Audio Device Writer block is of data type double or single, the block
clips values outside the range [–1, 1]. For other data types, the allowed input range is
[min, max] of the specified data type.
Data Types: single | double | int16 | int32 | uint8

5-7

5 Blocks in Audio System Toolbox

Output

Port_1 — Number of samples underrun
scalar

This port outputs the number of samples underrrun while writing a frame of data (one
input matrix).

Dependencies

To enable this port, select the Output number of samples underrun parameter.
Data Types: uint32

Parameters

Main Tab

Driver — Driver used to access your audio device
DirectSound (default) | ASIO | WASAPI

• ASIO drivers do not come pre-installed on Windows machines. To use the ASIO driver
option, install an ASIO driver outside of MATLAB.

Note: If Driver is set to ASIO, open the ASIO UI outside of MATLAB to set the sound
card buffer size to the frame size (number of rows) input to the Audio Device Writer
block. See the documentation of your ASIO driver for more information.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and
WASAPI drivers, supply an audio stream with a sample rate supported by your audio
device.

This parameter applies only on Windows machines. Linux machines always use the
ALSA driver. Mac machines always use the CoreAudio driver.

To specify nondefault Driver values, you must install Audio System Toolbox. If the
toolbox is not installed, specifying nondefault Driver values returns an error.

5-8

 Audio Device Writer

Device — Device used to play audio samples
default audio device (default)

The device list is populated with devices available on your computer.

Info — View information about your audio output configuration
button

This button opens a dialog box that lists your selected audio driver, the full name of your
audio device, and the maximum output channels for your configuration. For example:

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Sample rate (Hz).

Sample rate (Hz) — Sample rate used by device to play audio data
44100 (default) | positive scalar

The possible range of Sample rate (Hz) depends on your audio hardware.

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Device bit depth — Data type used by device to perform digital-to-analog conversion
16-bit integer (default) | 8-bit integer | 24-bit integer | 32-bit float

Before performing digital-to-analog conversion, the input data is cast to a data type
specified by this parameter.

5-9

5 Blocks in Audio System Toolbox

Note: To specify a nondefault Device bit depth, you must install Audio System Toolbox.
If the toolbox is not installed, specifying a nondefault Device bit depth returns an error.

Use default mapping between columns of input of this block and sound

card’s output channels — Toggle channel mapping source
on (default) | off

When you select this parameter, the block uses the default mapping between columns
of the matrix input to this block and the channels of your device. When you clear this
parameter, you specify the mapping in Device output channels.

Device output channels — Specify nondefault channel mapping
[1:MaximumOutputChannels] (default) | scalar | vector

Nondefault mapping between columns of matrix input to the Audio Device Writer block
and channels of output device, specified as a scalar or vector. For example:

If Device output channels is specified as 1:3, then:

• The first column of the input matrix maps to channel 1.
• The second column of the input matrix maps to channel 2.
• The third column of the input matrix maps to channel 3.

If Device output channels is specified as [3,1,2], then:

• The first column of the input matrix maps to channel 3.
• The second column of the input matrix maps to channel 1.
• The third column of the input matrix maps to channel 2.

Note: To selectively map between columns of the input matrix and your sound card's
output channels, you must install Audio System Toolbox. If the toolbox is not installed,
specifying nondefault values for Device output channels returns an error.

Dependencies

To enable this parameter, clear the Use default mapping between columns of input
of this block and sound card’s output channels parameter.

5-10

 Audio Device Writer

Output number of samples underrun — Specify output port for number of samples
underrun
off (default) | on

When you select this parameter, an output port is added to the block. The port outputs
the number of samples underrrun while writing a frame of data (one input matrix).

Model Examples

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

The executable generated from this block relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated
from this block and all the relevant files in a compressed zip file. Using this zip file, you
can relocate, unpack, and rebuild your project in another development environment
where MATLAB is not installed. For more details, see .

See Also

See Also

Blocks
Audio Device Reader | Binary File Reader

System Objects
audioDeviceWriter | audioDeviceReader

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”

5-11

5 Blocks in Audio System Toolbox

“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2016a

5-12

 Compressor

Compressor
Dynamic range compressor
Library: Audio System Toolbox / Dynamic Range Control

Description

The Compressor block performs dynamic range compression independently across each
input channel. Dynamic range compression attenuates the volume of loud sounds that
cross a given threshold. It uses specified attack and release times to achieve a smooth
applied gain curve. You can tune parameters of the Compressor block to meet your
processing needs.

Ports

Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input — Each column of the input is treated as an independent channel.
• 1-D vector input — The input is treated as a single channel.

This port is unnamed until you select the Output gain (dB) parameter.
Data Types: single | double

Output

Y — Output signal
matrix

The Compressor block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

5-13

5 Blocks in Audio System Toolbox

• Matrix input — The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input — The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies
To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –50 to 0

Operation threshold is the level above which gain is applied to the input signal.

Tunable: Yes

Ratio — Compression ratio
5 (default) | scalar in the range 1 to 50

Compression ratio is the input/output ratio for signals that overshoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB >

Threshold (dB), the compression ratio is defined as
R

x n T

y n T
=

-

-

([])

([]) .

• R is the compression ratio.

5-14

 Compressor

• x[n] is the input signal in dB.
• y[n] is the output signal in dB.
• T is the threshold in dB.

Tunable: Yes

Knee width (dB) — Transition area in the compression characteristic
0 (default) | scalar in the range 0 to 20

For soft knee characteristics, the transition area is defined by the relation

y x
R

x T
W

W
= +

-Ê
ËÁ

ˆ
¯̃

¥ - +Ê
ËÁ

ˆ
¯̃

¥()

1
1

2

2

2

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• R is the compression ratio.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes

View static characteristic — Open static characteristic plot of the dynamic range
compressor
button

The plot is updated automatically when parameters of the Compressor block change.

Attack time (s) — Time it takes applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4

Attack time is the time it takes the compressor gain to rise from 10% to 90% of its final
value when the input goes above the threshold. The Attack time (s) parameter smooths
the applied gain curve.

Tunable: Yes

5-15

5 Blocks in Audio System Toolbox

Release time (s) — Time it takes applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4

Release time is the time it takes the compressor gain to drop from 90% to 10% of its
final value when the input goes below the threshold. The Release time (s) parameter
smooths the applied gain curve.

Tunable: Yes

Make-up gain mode — Make-up gain mode
Property (default) | Auto

• Property — Make-up gain is set to the value specified by Make-up gain (dB).
• Auto — Make-up gain is applied at the output of the Compressor block such that a

steady-state 0 dB input has a 0 dB output.

Make-up gain (dB) — Applied make-up gain
0 (default) | scalar in the range –10 to 24

Make-up gain compensates for gain lost during compression. It is applied at the output of
the Compressor block.

Tunable: Yes

Dependencies

To enable this parameter, set Make-up gain mode to Property.

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

5-16

 Compressor

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The
G port outputs the gain applied on each input channel in dB.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter.
This option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you
run a simulation, Simulink® generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Model Examples

Algorithm
The Compressor block processes a signal frame by frame and element by element.

5-17

5 Blocks in Audio System Toolbox

1 The N-point signal, x[n], is converted to decibels:

x n x n
dB

[] log []= ¥20 10

2 xdB[n] passes through the gain computer. The gain computer uses the static
compression characteristic of the Compressor block to attenuate gain that is above
the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

x x

x x T
W

x
R

x T
W

W
T

sc dB

dB dB

dB

dB

() =

< -Ê
ËÁ

ˆ
¯̃

+
-Ê

Ë
Á

ˆ
¯
˜ - +Ê
Ë
Á

ˆ
¯
˜

2

1
1

2

2

2

--Ê
ËÁ

ˆ
¯̃

£ £ +Ê
ËÁ

ˆ
¯̃

+
-()

> +Ê
ËÁ

ˆ
¯̃

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô

W
x T

W

T
x T

R
x T

W

dB

dB

dB

2 2

2

ÔÔ
Ô
Ô
Ô

,

where T is the threshold, R is the ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

x x

x x T

T
x T

R
x T

sc dB

dB dB

dB

dB

() =

<

+
-()

≥

Ï

Ì
Ô

ÓÔ

3 The computed gain, gc[n], is calculated as

g n x n x nc sc dB[] [] [].= -

4 gΔ[n] is smoothed using specified attack and release time parameters:

g n
g n g n g n g n

g n gs
A s A c c s

R s R

[]
[] () [], [] []

[] ()
=

- + - > -

- + -

a a

a a

1 1 1

1 1 cc c sn g n g n[], [] []£ -

Ï
Ì
Ó 1

5-18

 Compressor

The attack time coefficient, αA , is calculated as

a A
AFs T

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

The release time coefficient, αR , is calculated as

a
R

RFs T
= -

¥
Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

TA is the attack time period, specified by the Attack time (s) parameter. TR is the
release time period, specified by the Release time (s) parameter. Fs is the input
sampling rate, specified by the Inherit sample rate from input or the Input
sample rate (Hz) parameter.

5 If Make-up gain (dB) is set to Auto, the make-up gain is calculated as the negative
of the computed gain for a 0 dB input,

M x x
sc dB

= - =().0

Given a steady-state input of 0 dB, this configuration achieves a steady-state output
of 0 dB. The make-up gain is determined by the Threshold (dB), Ratio, and Knee
width (dB) parameters. It does not depend on the input signal.

6 The make-up gain, M, is added to the smoothed gain, gs[n]:

g n g n Mm s[] []= +

7 The calculated gain in dB, gdB[n], is translated to a linear domain:

g nlin

g nm

[]

[]

=
Ê
Ë
Á

ˆ
¯
˜

10 20

8 The output of the dynamic range compressor is given as

y n x n g nlin[] [] [].= ¥

5-19

5 Blocks in Audio System Toolbox

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. “Digital Dynamic
Range Compressor Design—A Tutorial And Analysis”. Journal of Audio
Engineering Society. Vol. 60, Issue 6, pp. 399–408.

See Also

See Also

Blocks
Expander | Limiter | Noise Gate

System Objects
compressor

Topics
“Dynamic Range Control”

Introduced in R2016a

5-20

 Crossover Filter

Crossover Filter
Audio crossover filter
Library: Audio System Toolbox / Filters

Description

The Crossover Filter block implements an audio crossover filter, which is used to split
an audio signal into two or more frequency bands. Crossover filters are multiband filters
whose overall magnitude frequency response is flat.

Ports

Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input — Each column of the input is treated as an independent channel.
• 1-D vector input — The input is treated as a single channel.

Data Types: single | double

Output

Y1 — Output signal
matrix

Available if Number of crossovers is set to 1, 2, 3, or 4. Port Y1 always corresponds to
a lowpass filter.
Data Types: single | double

5-21

5 Blocks in Audio System Toolbox

Y2 — Output signal
matrix

Depending on the number of crossovers specified, port Y2 outputs the original audio
signal passed through a bandpass or highpass filter.

Available if Number of crossovers is set to 1, 2, 3 or 4.

Data Types: single | double

Y3 — Output signal
matrix

Depending on the number of crossovers specified, port Y3 corresponds to a bandpass or
highpass filter of the original audio signal.

Available if Number of crossovers is set to 2, 3 or 4.

Data Types: single | double

Y4 — Output signal
matrix

Available if Number of crossovers is set to 3 or 4.

Data Types: single | double

Y5 — Output signal
matrix

Available if Number of crossovers is set to 4.

Data Types: single | double

Parameters

If a parameter is listed as tunable, then you can change its value during simulation.

Number of crossovers — Number of magnitude response band crossings
1 (default) | 2 | 3 | 4

If you specify multiple crossovers, the corresponding Crossover frequency (Hz) and
Crossover order parameters populate in the dialog box automatically.

5-22

 Crossover Filter

The number of bands output by the Crossover Filter block is one more than the Number
of crossovers.

Number of Crossovers Number of Bands Output

1 two bands
2 three bands
3 four bands
4 five bands

Tunable: No

Crossover frequency (Hz) — Intersections of magnitude response bands
100 (default) | real scalar in the range 20 to 20000

Crossover frequencies are the intersections of magnitude response bands of the
individual two-band crossover filters used in the multiband crossover filter.

Tunable: Yes

Crossover order — Order of individual crossover filters
2 (default) | 1 | 3 | 4 | 5 | 6 | 7 | 8

The crossover filter order relates to the crossover filter slope in dB/octave: slope N= ¥6,

where N is the crossover order.

Tunable: Yes

View filter response — Open plot of magnitude response of each filter band
button

The plot is updated automatically when parameters of the Crossover Filter block change.

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

5-23

5 Blocks in Audio System Toolbox

Dependencies
To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter.
This option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Model Examples

Algorithm
The Crossover Filter block is implemented as a binary tree of crossover pairs with
additional phase-compensating sections [1]. Odd-order crossovers are implemented
with Butterworth filters, while even-order crossovers are implemented with cascaded
Butterworth filters (Linkwitz-Riley filters).

Odd-Order Crossover Pair

Odd-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

5-24

 Crossover Filter

LP and HP are Butterworth filters of order N, implemented as direct-form II transposed
second-order sections. The shared cutoff frequency used in their design corresponds to
the crossover of the resulting bands.

Even-Order Crossover Pair

Even-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

LP and HP are Butterworth filters of order N/2, where N is the order of the overall filter.
The filters are implemented as direct-form II transposed second-order sections.

For overall filters of orders 2 and 6, XHI is multiplied by –1 internally so that the
branches of your crossover pair are in-phase.

Even-Order Three-Band Filter

Even-order three-band (two crossovers) filters are implemented as parallel
complementary highpass and lowpass filters organized in a tree structure.

5-25

5 Blocks in Audio System Toolbox

The phase-compensating section is equivalent to an allpass filter.

The design of four-band and five-band filters (three and four crossovers) are extensions
of the pattern developed for even-order and odd-order crossovers and the tree structure
specified for three-band (two crossover) filters.

References

[1] D’Appolito, Joseph A. “Active Realization of Multiway All-Pass Crossover Systems”.
Journal of Audio Engineering Society. Vol. 35, Issue 4, pp. 239–245.

See Also

See Also

System Objects
crossoverFilter

Topics
“Multiband Dynamic Range Compression”

5-26

 Crossover Filter

Introduced in R2016a

5-27

5 Blocks in Audio System Toolbox

Expander
Dynamic range expander
Library: Audio System Toolbox / Dynamic Range Control

Description

The Expander block performs dynamic range expansion independently across each input
channel. Dynamic range expansion attenuates the volume of quiet sounds below a given
threshold. It uses specified attack, release, and hold times to achieve a smooth applied
gain curve. You can tune parameters of the Expander block to meet your processing
needs.

Ports

Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input — Each column of the input is treated as an independent channel.
• 1-D vector input — The input is treated as a single channel.

Data Types: single | double

Output

Y — Output signal
matrix

The Expander block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

• Matrix input — The block outputs a matrix the same size and data type as the input
signal.

5-28

 Expander

• 1-D vector input — The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.
Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters

If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Ratio — Expansion ratio
5 (default) | scalar in the range 1 to 50

Expansion ratio is the input/output ratio for signals that undershoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB <

Threshold (dB), the expansion ratio is defined as
R

y n T

x n T
=

-

-

([])

([]) .

• R is the expansion ratio.
• y[n] is the output signal in dB.
• x[n] is the input signal in dB.
• T is the threshold in dB.

5-29

5 Blocks in Audio System Toolbox

Tunable: Yes

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –140 to 0

Operation threshold is the level below which gain is applied to the input signal.

Tunable: Yes

Knee width (dB) — Transition area in the compression characteristic
0 (default) | scalar in the range 0 to 20

For soft knee characteristics, the transition area is defined by the relation

y x

R x T
W

W
= +

- ¥ - -Ê
ËÁ

ˆ
¯̃

¥()

()1
2

2

2

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• R is the expansion ratio.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes

View static characteristic — Open static characteristic plot of the dynamic range
expander
button

The plot is updated automatically when parameters of the Expander block change.

Attack time (s) — Time it takes applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4

5-30

 Expander

Attack time is the time it takes the expander gain to rise from 10% to 90% of its final
value when the input goes below the threshold. The Attack time (s) parameter smooths
the applied gain curve.

Tunable: Yes

Release time (s) — Time it takes applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4

Release time is the time it takes the expander gain to drop from 90% to 10% of its
final value when the input goes above the threshold. The Release time (s) parameter
smooths the applied gain curve.

Tunable: Yes

Hold time (s) — Time during which applied gain holds steady
0.05 (default) | scalar in the range 0 to 4

Hold time is the period in which the applied gain is held constant before it starts
moving toward its steady-state value. Hold time begins when the input level crosses the
operation threshold.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

5-31

5 Blocks in Audio System Toolbox

When you select this parameter, an additional output port, G, is added to the block. The
G port outputs the gain applied on each input channel in dB. By default, this parameter
is cleared.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter.
This option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Model Examples

Algorithm

The Expander block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to decibels:

5-32

 Expander

x n x n
dB

[] log []= ¥20 10

2 xdB[n] passes through the gain computer. The gain computer uses the static
characteristic properties of the dynamic range expander to attenuate gain that is
below the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

x x

T x T R x T
W

x

R x T
W

sc dB

dB dB

dB

dB

() =

+ -() ¥ < -Ê
ËÁ

ˆ
¯̃

+
-() - -Ê

Ë
Á

ˆ
¯
˜

2

1
2

2

22 2 2

2

W
T

W
x T

W

x x T
W

dB

dB dB

-Ê
ËÁ

ˆ
¯̃

£ £ +Ê
ËÁ

ˆ
¯̃

> +Ê
ËÁ

ˆ
¯̃

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô

,,

where T is the threshold, R is the ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

x x
T x T R x T

x x T
sc dB

dB dB

dB dB

() =
+ -()¥ <

≥

Ï
Ì
Ó

3 The computed gain, gc[n], is calculated as

g n x n x nc sc dB[] [] [].= -

4 gc[n] is smoothed using specified attack, release, and hold time parameters:

g n

g n g n

g n

g n g n

g

s

A s A c

s

R s R c

s

[]

[] () []

[]

[] () []

[

=

- + -

-

- + -

a a

a a

1 1

1

1 1

nn

C T g n g n

C T

C T g n g n

A H c s

A H

R H c s

-

Ï

Ì

Ô
Ô

Ó
Ô
Ô

>() > -()
£

>() £

1

1

]

& [] []

& [] [--()
£

1]

C TR H 5-33

5 Blocks in Audio System Toolbox

The attack time coefficient, αA , is calculated as

a A
AFs T

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

The release time coefficient, αR , is calculated as

a
R

RFs T
= -

¥
Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

TA is the attack time period, specified by the Attack time (s) parameter. TR is the
release time period, specified by the Realease time (s) parameter. Fs is the input
sampling rate, specified by the Inherit sample rate from input or Input sample
rate (Hz) parameter.

CA and CR are hold counters for attack and release, respectively. The limit, TH,
determined by the Hold time (s) parameter.

5 The smoothed gain in dB, gs[n], is translated to a linear domain:

g nlin

g ns

[]

[]

=
Ê
Ë
Á

ˆ
¯
˜

10 20

6 The output of the dynamic range expander is given as

y n x n g nlin[] [] [].= ¥

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. “Digital Dynamic
Range Compressor Design—A Tutorial And Analysis”. Journal of Audio
Engineering Society. Vol. 60, Issue 6, pp. 399–408.

5-34

 Expander

See Also

See Also

Blocks
Compressor | Limiter | Noise Gate

System Objects
expander

Topics
“Dynamic Range Control”

Introduced in R2016a

5-35

5 Blocks in Audio System Toolbox

Limiter
Dynamic range limiter
Library: Audio System Toolbox / Dynamic Range Control

Description

The Limiter block performs dynamic range limiting independently across each input
channel. Dynamic range limiting suppresses the volume of loud sounds that cross a given
threshold. It uses specified attack and release times to achieve a smooth applied gain
curve. You can tune parameters of the Limiter block to meet your processing needs.

Ports

Input

Port_1 — Input signal
1-D vector | matrix

• Matrix input — Each column of the input is treated as an independent channel.
• 1-D vector input — The input is treated as a single channel.

Data Types: single | double

Output

Y — Output signal
matrix

The Limiter block outputs a signal with the same data type as the input signal. The size
of the output depends on the size of the input:

• Matrix input — The block outputs a matrix the same size and data type as the input
signal.

5-36

 Limiter

• 1-D vector input — The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.
Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters

If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –50 to 0

Operation threshold is the level above which gain is applied to the input signal.

Tunable: Yes

Knee width (dB) — Transition area in the limiter characteristic
0 (default) | scalar in the range 0 to 20

For soft knee characteristics, the transition area is defined by the relation

y x

x T
W

W
= -

- +Ê
ËÁ

ˆ
¯̃

¥()
2

2

2

5-37

5 Blocks in Audio System Toolbox

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes

View static characteristic — Open static characteristic plot of the dynamic range
limiter
button

The plot is updated automatically when parameters of the Limiter block change.

Attack time (s) — Time it takes applied gain to ramp up
0 (default) | scalar in the range 0 to 4

Attack time is the time it takes the limiter gain to rise from 10% to 90% of its final value
when the input goes above the threshold. The Attack time (s) parameter smooths the
applied gain curve.

Tunable: Yes

Release time (s) — Time it takes applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4

Release time is the time it takes the limiter gain to drop from 90% to 10% of its final
value when the input goes below the threshold. The Release time (s) parameter
smooths the applied gain curve.

Tunable: Yes

Make-up gain mode — Make-up gain mode
Property (default) | Auto

• Property — Make-up gain is set to the value specified by Make-up gain (dB).

• Auto — Make-up gain is applied at the output of the Limiter block such that a steady-
state 0 dB input has a 0 dB output.

5-38

 Limiter

Make-up gain (dB) — Applied make-up gain
0 (default) | scalar in the range –10 to 24

Make-up gain compensates for gain lost during limiting. It is applied at the output of the
Limiter block.

Tunable: Yes

Dependencies

To enable this parameter, set Make-up gain mode to Property.

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz) — Specify input sample rate
44100 (default) | positive scalar

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The
G port outputs the gain applied on each input channel in dB. By default, this parameter
is cleared.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter.
This option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

5-39

5 Blocks in Audio System Toolbox

• Code generation — Simulate model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Model Examples

Algorithm

The Limiter block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to decibels:

x n x n
dB

[] log []= ¥20 10

2 xdB[n] passes through the gain computer. The gain computer uses the static
characteristic properties of the dynamic range limiter to brickwall gain that is above
the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

5-40

 Limiter

x x

x x T
W

x

x T
W

W
T

W
sc dB

dB dB

dB

dB

() =

< -Ê
ËÁ

ˆ
¯̃

-
- +Ê

Ë
Á

ˆ
¯
˜

-Ê
ËÁ

ˆ
¯̃

£

2

2

2 2

2

xx T
W

T x T
W

dB

dB

£ +Ê
ËÁ

ˆ
¯̃

> +Ê
Ë
Á

ˆ
¯
˜

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô

2

2

,

where T is the threshold and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

x x
x x T

T x T
sc dB

dB dB

dB

() =
<

≥

Ï
Ì
Ó

3 The computed gain, gc[n], is calculated as

g n x n x nc sc dB[] [] [].= -

4 gc[n] is smoothed using specified attack and release time parameters:

g n
g n g n g n g n

g n gs
A s A c c s

R s R

[]
[] () [], [] []

[] ()
=

- + - > -

- + -

a a

a a

1 1 1

1 1 cc c sn g n g n[], [] []£ -

Ï
Ì
Ó 1

The attack time coefficient, αA , is calculated as

a A
AFs T

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

The release time coefficient, αR , is calculated as
5-41

5 Blocks in Audio System Toolbox

a
R

RFs T
= -

¥
Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

TA is the attack time period, specified by the Attack time (s) parameter. TR is the
release time period, specified by the Release time (s) parameter. Fs is the input
sampling rate, specified by the Inherit sample rate from input or Input sample
rate (Hz) parameter.

5 If Make-up gain (dB) is set to Auto, the make-up gain is calculated as the negative
of the computed gain for a 0 dB input:

M x x
sc dB

= - =()0

Given a steady-state input of 0 dB, this configuration achieves a steady-state output
of 0 dB. The make-up gain is determined by the Threshold (dB) and Knee width
(dB) parameters. It does not depend on the input signal.

6 The make-up gain, M, is added to the smoothed gain, gs[n]:

g n g n Mm s[] []= +

7 The calculated gain in dB, gm[n], is translated to a linear domain:

g nlin

g nm

[]

[]

=
Ê
Ë
Á

ˆ
¯
˜

10 20

8 The output of the dynamic range limiter is given as

y n x n g nlin[] [] [].= ¥

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. “Digital Dynamic
Range Compressor Design—A Tutorial And Analysis”. Journal of Audio
Engineering Society. Vol. 60, Issue 6, pp. 399–408.5-42

 Limiter

See Also

See Also

Blocks
Compressor | Expander | Noise Gate

System Objects
limiter

Topics
“Dynamic Range Control”

Introduced in R2016a

5-43

5 Blocks in Audio System Toolbox

Loudness Meter
Standard-compliant loudness measurements
Library: Audio System Toolbox / Measurements

Description
The Loudness Meter block measures the loudness and true-peak of an audio signal based
on EBU R 128 and ITU-R BS.1770-4 standards.

Ports

Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input — Each column of the input is treated as an independent channel. If you
use the default Channel weights, specify the input channels in order: [Left, Right,
Center, Left surround, Right surround].

• 1-D vector input — The input is treated as a single channel.

Data Types: single | double

Output

M — Momentary loudness measurement
column vector

The block outputs a column vector with the same data type and number of rows as the
input signal.
Data Types: single | double

S — Short-term loudness measurement
column vector

5-44

 Loudness Meter

The block outputs a column vector with the same data type and number of rows as the
input signal.
Data Types: single | double

TP — True-peak value
real scalar

The block outputs a real scalar with the same data type as the input signal.

Dependencies
To enable this port, select the Output true-peak value parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Channel weights — Linear weighting applied to each input channel
[1, 1, 1, 1.41, 1.41] (default) | nonnegative row vector

The number of elements of the row vector must be equal to or greater than the number of
input channels. Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default
channel weights, specify the input to the Loudness Meter block as a matrix whose
columns correspond to channels in this order: [Left, Right, Center, Left surround, Right
surround].

It is a best practice to consistently specify the channel weights in order: [Left, Right,
Center, Left surround, Right surround].

Tunable: Yes

Use relative scale for loudness measurements — Specify block to output
loudness measurements relative to target level
off (default) | on

• On — The loudness measurements are relative to the value specified by Target
loudness level (LUFS). The output of the block is returned in loudness units (LU).

5-45

5 Blocks in Audio System Toolbox

• Off — The loudness measurements are absolute, and returned in loudness units full
scale (LUFS).

Tunable: No

Target loudness level (LUFS) — Reference level for relative loudness measurements
–23 (default) | real scalar

For example, if the Target loudness level (LUFS) is –23, then a loudness value of –24
LUFS is reported as –1 LU.

Tunable: Yes

Dependencies
To enable this parameter, select the Use relative scale for loudness measurements
parameter.

Output true-peak value — Add output port for true-peak value
off (default) | on

When you select this parameter, an additional output port, TP, is added to the block. The
TP port outputs the true-peak value of the input frame.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: No

Dependencies
To enable this parameter, clear the Inherit sample rate from input parameter.

5-46

 Loudness Meter

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation — Simulate model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

• Interpreted execution — Simulate model using the MATLAB interpreter.
This option shortens startup time but has a slower simulation speed than Code
generation. In this mode, you can debug the source code of the block.

Tunable: No

Model Examples

Algorithm

The Loudness Meter block calculates the momentary loudness, short-term loudness,
and true-peak value of an audio signal. You can specify any number of channels and
nondefault channel weights used for loudness measurements. The block algorithm is
described for the general case of n channels and default channel weights.

5-47

5 Blocks in Audio System Toolbox

Loudness Measurements

The input channels, x, pass through a K-weighted filter implemented using the algorithm
of the Weighting Filter block. The K-weighted filter shapes the frequency spectrum
to reflect perceived loudness.

Momentary Loudness

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second
overlap. If the required number of samples have not been collected yet, the Loudness
Meter block returns the last computed value for momentary loudness. If enough
samples have been collected, then the power (mean square) of each segment of the K-
weighted channels is calculated:

mP
w

y ki i
k

w

=

=

Â
1 2

1

[]

• mPi is the momentary power of the ith segment.
• w is the segment length in samples.

2 The momentary loudness, mL, is computed for each segment:

mL G mP LUFSi c i c

c

n

= - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃()

=
Â0 691 10 10

1

. log ,

• Gc is the weighting for channel c.

mL is the momentary loudness returned by your Loudness Meter block.

Short-Term Loudness

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second
overlap. If the required number of samples have not been collected yet, the Loudness
Meter block returns the last computed values for short-term loudness and loudness
range. If enough samples have been collected, then the power (mean square) of each
K-weighted channel is calculated:

5-48

 Loudness Meter

sP
w

y ki i
k

w

=

=

Â
1 2

1

[]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

2 The short-term loudness, sL, is computed for each segment:

sL G sP LUFSi c i c

c

n

= - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃()

=
Â0 691 10 10

1

. log ,

• Gc is the weighting for channel c.

sL is the short-term loudness returned by your Loudness Meter block.

True-Peak

The true-peak measurement considers only the current input frame of a call to your
loudness meter.

1 The signal is oversampled to at least 192 kHz. To optimize processing, the input
sample rate determines the exact oversampling. An input sample rate below 750 Hz
is not considered.

Input Sample Rate (kHz) Upsample Factor

[0.75,1.5) 256
[1.5,3) 128
[3,6) 64
[6,12) 32
[12,24) 16
[24,48) 8
[48,96) 4
[96,192) 2
[192,∞) not required

5-49

5 Blocks in Audio System Toolbox

2 The oversampled signal, a, passes through a lowpass filter with a half-
polyphase length of 12 and stopband attenuation of 80 dB. The filter design uses
designMultirateFIR.

3 The filtered signal, b, is rectified and converted to the dB TP scale:

c b= ¥ ()20 10log

4 The true-peak is determined as the maximum of the converted signal, c.

References

[1] International Telecommunication Union; Radiocommunication Sector. Algorithms
to Measure Audio Programme Loudness and True-Peak Audio Level. ITU-R
BS.1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum
Level of Audio Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to
Supplement EBU R 128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

See Also

See Also

Functions
integratedLoudness

System Objects
loudnessMeter

Introduced in R2016b

5-50

 MIDI Controls

MIDI Controls
Output values from controls on MIDI control surface
Library: Audio System Toolbox / Sources

Description

The MIDI Controls block outputs values from controls on a MIDI control surface in real
time. Use the MIDI Controls block to interact with your audio processing model.

The MIDI Controls block combines the functionality of the general MIDI functions in
MATLAB: midicontrols, midiread, midisync. Use the MATLAB midiid command
to discover MIDI device names or MIDI device control numbers.

Ports

Output

Port_1 — Output signal
matrix

The output size of the MIDI Controls block is determined by the MIDI controls and
MIDI control numbers parameters.

The output data type is determined by the Output mode parameter.

Data Type Output Mode

double Normalized (0-1)

uint8 RAW MIDI (0-127)

Data Types: double | uint8

5-51

5 Blocks in Audio System Toolbox

Parameters

MIDI device — MIDI control surface your block listens to
Default (default) | Specify other

To set the default MIDI device, use the setpref function. For example, if the device is
named BCF2000, at the MATLAB command line, enter:

setpref('midi','DefaultDevice','BCF2000');

MIDI device name — Device name of MIDI control surface your block listens to
character vector

The MIDI device name is assigned by the device manufacturer or host operating system,
and specified as a character vector. Use midiid to interactively identify your MIDI
device.

To enable this parameter, set MIDI device to Specify other.

MIDI controls — Specify if block responds to all controllers or specific controllers on MIDI
surface
Respond to any control (default) | Respond to specified controls

This parameter also determines the size of the block output port. If you choose Respond
to any control, then the block output is a scalar corresponding to the value of the
most recently manipulated control.

MIDI control numbers — Control numbers associated with MIDI surface controllers that
your block responds to
0 (default) | integer | array of integers

Use midiid to interactively identify the control numbers of your MIDI device. This
parameter is available when you set MIDI controls to Respond to specified
controls.

Initial values — Control numbers associated with MIDI surface controllers that your block
responds to
0 (default) | scalar | array

If you specify Initial values as a scalar, all controls specified by MIDI control
numbers are assigned that value.

5-52

 MIDI Controls

If you specify Initial values as an array, the array must be the same size as MIDI
control numbers.

Send initial values to device at start — Synchronize MIDI surface with values
specified initial values
off (default) | on

Select this parameter to synchronize a MIDI device with values specified by the Initial
values when simulation starts. If your MIDI device can receive and respond to messages,
it adjusts its controls as specified. This parameter is valid only when MIDI controls is
set to Respond to specified controls.

Many MIDI devices are not bidirectional. Selecting this parameter with a unidirectional
device has no effect. The MIDI Controls block cannot tell whether a value is successfully
sent to a device or even whether the device is bidirectional. If sending a value fails, no
errors or warnings are generated.

Output Mode — Output mode for MIDI control value
Normalized (0-1) (default) | RAW MIDI (0-127)

Model Examples

See Also

See Also

Functions
midicontrols | midiid | midiread | midisync

Topics
“Musical Instrument Digital Interface (MIDI)”

5-53

5 Blocks in Audio System Toolbox

Noise Gate
Dynamic range gate
Library: Audio System Toolbox / Dynamic Range Control

Description
The Noise Gate block performs dynamic range gating independently across each input
channel. Dynamic range gating suppresses signals below a given threshold. It uses
specified attack, release, and hold times to achieve a smooth applied gain curve. You can
tune parameters of the Noise Gate block to meet your processing needs.

Ports

Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input — Each column of the input is treated as an independent channel.
• 1-D vector input — The input is treated as a single channel.

Data Types: single | double

Output

Y — Output signal
matrix

The Noise Gate block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

• Matrix input — The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input — The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

5-54

 Noise Gate

This port is unnamed until you select the Output gain (dB) parameter.
Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters

If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –140 to 0

Operation threshold is the level below which gain is applied to the input signal.

Tunable: Yes

View static characteristic — Open static characteristic plot of the dynamic range
gate
button

The plot is updated automatically when parameters of the Noise Gate block change.

Attack time (s) — Time it takes applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4

Attack time is the time it takes the applied gain to rise from 10% to 90% of its final value
when the input goes below the threshold. The Attack time (s) parameter smooths the
applied gain curve.

Tunable: Yes

5-55

5 Blocks in Audio System Toolbox

Release time (s) — Time it takes applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4

Release time is the time it takes the applied gain to drop from 90% to 10% of its final
value when the input goes above the threshold. The Release time (s) parameter
smooths the applied gain curve.

Tunable: Yes

Hold time (s) — Time during which applied gain holds steady
0.05 (default) | scalar in the range 0 to 4

Hold time is the period in which the applied gain is held constant before it starts
moving toward its steady-state value. Hold time begins when the input level crosses the
operation threshold.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz) — Specify input sample rate
44100 (default) | scalar

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The
G port outputs the gain applied on each input channel in dB.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

5-56

 Noise Gate

• Interpreted execution — Simulate model using the MATLAB interpreter.
This option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Model Examples

Algorithm

The Noise Gate block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to magnitude:

x n x n
a
[] []=

2 xa[n] passes through the gain computer. The gain computer uses the static
characteristic properties of the dynamic range gate to apply a brickwall gain for
signal below the threshold:

5-57

5 Blocks in Audio System Toolbox

g x
x T

x Tc a
a lin

a lin

() =
<

≥

Ï
Ì
Ó

0

1

Tlin is the threshold property converted to a linear domain:

T
lin

T
dB

=
Ê
Ë
Á ˆ

¯
˜

10
20

3 The computed gain, gc[n], is smoothed using specified attack, release, and hold time
parameters:

g n

g n g n

g n

g n g n

g

s

A s A c

s

R s R c

s

[]

[] () []

[]

[] () []

[

=

- + -

-

- + -

a a

a a

1 1

1

1 1

nn

if C T g n g n

if C T

if C T g n

A H c s

A H

R H c

-

Ï

Ì

Ô
Ô

Ó
Ô
Ô

>() > -()
£

>()
1

1

]

& [] []

& []] []£ -()
£

g n

if C T

s

R H

1

The attack time coefficient, αA , is calculated as

a A
AFs T

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

The release time coefficient, αR , is calculated as

a
R

RFs T
= -

¥
Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

TA is the attack time period, specified by the Attack time (s) parameter. TR is the
release time period, specified by the Release time (s) parameter. Fs is the input
sampling rate, specified by the Inherit sample rate from input or Input sample
rate (Hz) parameter.

CA and CR are hold counters for attack and release, respectively. The limit, TH , is
determined by the Hold time (s) parameter.

4 The output of the dynamic range gate is given as

5-58

 Noise Gate

y n x n g n
s

[] [] [].= ¥

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. “Digital Dynamic
Range Compressor Design—A Tutorial And Analysis”. Journal of Audio
Engineering Society. Vol. 60, Issue 6, pp. 399–408.

See Also

See Also

Blocks
Compressor | Expander | Limiter

System Objects
noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

5-59

5 Blocks in Audio System Toolbox

Octave Filter
Octave-band and fractional octave-band filter
Library: Audio System Toolbox / Filters

Description

The Octave Filter block performs octave-band or fractional octave-band filtering
independently across each input channel. An octave-band is a frequency band where the
highest frequency is twice the lowest frequency. Octave-band and fractional octave-band
filters are commonly used to mimic how humans perceive loudness. Octave filters are
best understood when viewed on a logarithmic scale, which models how the human ear
weights the spectrum.

Ports

Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input — Each column of the input is treated as an independent channel.
• 1-D vector input — The input is treated as a single channel.

Data Types: single | double

Output

Port_1 — Output signal
matrix

The Octave Filter block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

5-60

 Octave Filter

• Matrix input — The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input — The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

Data Types: single | double

Parameters

If a parameter is listed as tunable, then you can change its value during simulation.

Filter order — Order of the octave filter
6 (default) | even integer

Tunable: No

Center frequency (Hz) — Center frequency of the octave filter
1000 (default) | scalar in the range 3 to 22000

• The maximum center frequency is the value that causes the upper band edge to be
equal to the Nyquist frequency, Fs/2. Frequencies above this value are saturated.

• The minimum center frequency is the value that causes the lower band edge to be
equal to one Hz. Frequencies below this value are quantized to one Hz.

Tunable: Yes

Bandwidth — Filter bandwidth in octaves
1 octave (default) | 2/3 octave | 1/2 octave | 1/3 octave | 1/6 octave | 1/12
octave | 1/24 octave | 1/48 octave

Tunable: Yes

Oversample the input by 2 for this filter — Oversample toggle
off (default) | on

• off — The Octave Filter block runs at the input sample rate.
• on — The Octave Filter block runs at two times the input sample rate. Oversampling

minimizes the frequency warping effects introduced by the bilinear transformation.
An FIR halfband interpolator implements oversampling before octave filtering. A
halfband decimator reduces the sample rate back the input sampling rate after octave
filtering.

5-61

5 Blocks in Audio System Toolbox

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation — Simulate model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

• Interpreted execution — Simulate model using the MATLAB interpreter.
This option shortens startup time but has a slower simulation speed than Code
generation. In this mode, you can debug the source code of the block.

Mask for attenuation limits — Creates a mask for filter response visualization
No mask (default) | Class 0 | Class 1 | Class 2

The mask attenuation limits are defined in the ANSI S1.11-2004 standard.

• If the mask is green, the design is compliant.
• If the mask is red, the design breaks compliance.

Visualize filter response — Open plot to visualize magnitude response and
compliance mask
button

A 2048-point FFT is used to calculate the magnitude response.

5-62

 Octave Filter

Model Examples

Definitions

Band Edge

A band edge frequency refers to the lower or upper edge of the passband of a bandpass
filter.

Center Frequency of Octave Filter

The center frequency of an octave filter is the geometric mean of the lower and upper band
edge frequencies.

Algorithm

Octave Bandwidth to Band Edge Conversion

The Octave Filter block uses the specified center frequency and filter bandwidth in
octaves to determine the normalized band edges [2].

First the object normalizes the specified center frequency:

f
CenterFrequency

SampleRatec =
¥2

Then the object computes the band edge frequencies:

f f Gpa c
b

= ¥

-
1

2

f f Gpb c
b

= ¥

1
2

• b is the octave bandwidth specified by the Bandwidth property. For example, if
Bandwidth is specified as '1/3 octave', the value of b is 3.

•
G is a conversion constant: G = 10

3
10

5-63

5 Blocks in Audio System Toolbox

Digital Filter Design

The octaveFilter System object implements a higher-order digital bandpass filter
design method specified in [1].

In this design method, a desired digital bandpass filter maps to a Butterworth lowpass
analog prototype, which is then mapped back to a digital bandpass filter:

1 The analog Butterworth filter is expressed as a cascade of second-order sections:

H s H s H s H s H s
K

() () () () () ,= 0 1 2 L where:

∑ =

=

+

= +

Ï

Ì
ÔÔ

Ó
Ô
Ô

H s

N K

N K0

0

1 2

1

1
1

2 1()

,

,

if

if

W

∑ =

- +

=H s

s s

i Ki

i

()

cos

, , , ...,
1

1 2

1 2

0

2

0
2W W

q

∑ = - +() =q
p

i
N

N i i N N
2

1 2 1 2 2, , ,..., ,...,

2 The analog Butterworth filter is mapped to a digital filter using a bandpass version
of the bilinear transformation:5-64

 Octave Filter

s
cz z

z

=
- +

-

- -

-

1

1

1 2

2
,

where

c
pa pb

pa pb

=
+()

+

sin

sin sin
.

w w

w w

This mapping results in the following substitution:

W
0

=
-c pb

pb

cos

sin

w

w

3 The analog prototype is evaluated:

H z

s s
i

i

s
cz z

z

()

cos

=

- +

=
- +

-

- -

-

1

1 2
0

2

0
2

1 2

1

1 2

2

W W

q

Because s is second-order in z, the bandpass version of the bilinear transformation is
fourth-order in z.

References

[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ:
Prentice Hall, 2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-
Band and Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004.
Melville: NY, 2009.

5-65

5 Blocks in Audio System Toolbox

See Also

See Also

System Objects
octaveFilter | weightingFilter

Blocks
Weighting Filter

Introduced in R2016b

5-66

 Parametric EQ Filter

Parametric EQ Filter
Second-order parametric equalizer filter
Library: Audio System Toolbox / Filters

Description

The Parametric EQ Filter block filters each channel of the input signal over time using
a specified center frequency, bandwidth, and peak (dip) gain. This block offers tunable
filter design parameters, which enable you to tune the filter characteristics while the
simulation is running. The filter uses a coupled allpass structure to optimize joint
computation of the peak and notch response.

This block supports variable-size input, enabling you to change the channel length
during simulation. To enable variable-size input, clear the Inherit sample rate from
input parameter. The number of channels must remain constant.

Ports

Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input — Each column of the input is treated as an independent channel.
• 1-D vector input — The input is treated as a signal channel.

Data Types: single | double

Output

Port_1 — Output signal
matrix

5-67

5 Blocks in Audio System Toolbox

The Parametric EQ Filter block outputs a signal with the same data type as the input
signal. The size of the output depends on the size of the input:

• Matrix input — The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input — The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

Data Types: single | double

Parameters

If a parameter is listed as tunable, then you can change its value during simulation.

Filter specification — Specify parameters or coefficients used to design filter
Bandwidth and center frequency (default) | Coefficients | Quality factor
and center frequency

• Bandwidth and center frequency — Design the filter using Filter bandwidth
(Hz), Equalizer center frequency (Hz), and Gain (dB).

• Coefficients — Design the filter using Bandwidth coefficient, Center
frequency coefficient, and Gain (Linear Units).

• Quality factor and center frequency — Design the filter using Equalizer
center frequency (Hz), Gain (dB), and Quality factor.

Tunable: No

Filter bandwidth (Hz) — Bandwidth of the filter
2205 (default) | positive scalar

Specify the filter bandwidth as a positive scalar that is less than half the sample rate of
the input signal.

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Bandwidth and center
frequency.

5-68

 Parametric EQ Filter

Equalizer center frequency (Hz) — Center frequency of the filter
11025 (default) | positive scalar

Specify the center frequency as a positive scalar that is less than half the sample rate of
the input signal.

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Bandwidth and center
frequency or Quality factor and center frequency.

Gain (dB) — Peak or dip gain of the filter
6.0206 (default) | real scalar

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Bandwidth and center
frequency or Quality factor and center frequency.

Bandwidth coefficient — Coefficient that determines the filter bandwidth
0.72654 (default) | scalar in the range –1 to 1

• -1 corresponds to the maximum bandwidth (one-fourth the sample rate of the input
signal).

• 1 corresponds to the minimum bandwidth (0 Hz, that is, an allpass filter).

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Coefficients.

Center frequency coefficient — Coefficient that determines the filter center frequency
0 (default) | scalar in the range –1 to 1

5-69

5 Blocks in Audio System Toolbox

• -1 corresponds to the minimum center frequency (0 Hz).
• 1 corresponds to the maximum center frequency (half the sample rate of the input

signal).

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Coefficients.

Gain (Linear Units) — Peak or dip gain of the filter
2 (default) | positive scalar

A value greater than one boosts the input signal. A value less than one attenuates the
input signal.

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Coefficients.

Quality factor — Quality factor of the filter
5 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Quality factor and center
frequency.

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

5-70

 Parametric EQ Filter

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

View Filter Response — Open plot to visualize magnitude response
button

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Interpreted execution — Simulate model using the MATLAB interpreter.
This option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused
for subsequent simulations, as long as the model does not change. This option
requires additional startup time but the speed of the subsequent simulations is faster
compared to Interpreted execution.

Model Examples

References

[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Upper Saddle River, NJ:
Prentice-Hall, 1996.

See Also

See Also

System Objects
multibandParametricEQ

5-71

5 Blocks in Audio System Toolbox

Functions
designParamEQ | designShelvingEQ | designVarSlopeFilter

Topics
“Parametric Equalizer Design”
“Equalization”

5-72

 Reverberator

Reverberator
Add reverberation to audio signal
Library: Audio System Toolbox / Effects

Description

The Reverberator block adds reverberation to mono or stereo audio signals. You can tune
parameters of the Reverberator block to mimic different acoustic environments.

Ports

Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input — Each column of the input is treated as an independent channel.
• 1-D vector input — The input is treated as a single channel.

Data Types: single | double

Output

Port_1 — Output signal
matrix

The Reverberator block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

• Matrix input — The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input — The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

5-73

5 Blocks in Audio System Toolbox

Data Types: single | double

Parameters

If a parameter is listed as tunable, then you can change its value during simulation.

Pre-delay (s) — Pre-delay for reverberation
0 (default) | scalar in the range 0 to 1

Pre-delay for reverberation is the time between hearing direct sound and the first early
reflection. The value of Pre-delay (s) is proportional to the size of the room being
modeled.

Tunable: Yes

Highcut frequency (Hz) — Lowpass filter cutoff in the range 0 to (Sample Rate)/2
20000 (default) | real positive scalar

Lowpass filter cutoff is the –3 dB cutoff frequency for the single-pole lowpass filter at the
front of the reverberator structure. It prevents the application of reverberation to high-
frequency components of the input.

Tunable: Yes

Diffusion — Density of reverb tail
0.50 (default) | scalar in the range 0 to 1

Diffusion is proportional to the rate at which the reverb tail builds in density.
Increasing Diffusion pushes the reflections closer together, thickening the sound.
Reducing Diffusion creates more discrete echoes.

Tunable: Yes

Decay factor — Decay factor of reverb tail
0.50 (default) | scalar in the range 0 to 1

Decay factor is proportional to the time it takes for reflections to run out of energy. To
model a large room, use a long reverb tail (low decay factor). To model a small room, use
a short reverb tail (high decay factor).

Tunable: Yes

5-74

 Reverberator

High frequency damping — High-frequency damping
0.0005 (default) | scalar in the range 0 to 1

High frequency damping is proportional to the attenuation of high frequencies in the
reverberation output. Setting High frequency damping to a large value makes high-
frequency reflections decay faster than low-frequency reflections.

Tunable: Yes

Wet/dry mix — Ratio of wet (reverberated) signal to dry (original) signal
0.3 (default) | scalar in the range 0 to 1

Wet/dry mix is the ratio of wet (reverberated) signal to dry (original) signal that your
Reverberator block outputs.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter.
This option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires

5-75

5 Blocks in Audio System Toolbox

additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Model Examples

Algorithms

The algorithm to add reverberation follows the plate-class reverberation topology
described in [1] and is based on a 29,761 Hz sample rate.

The algorithm has five stages.

The description for the algorithm that follows is for a stereo input. A mono input is a
simplified case.

Stereo-to-Mono

A stereo signal is converted to a mono signal: x n x n x n
R L

[] . [] []= ¥ +()0 5 .

Preconditioning

A delay followed by a lowpass filter preconditions the mono signal.

5-76

 Reverberator

•
The pre-delay output is determined as x n x n kp[] []= - , where the Pre-delay (s)
parameter determines the value of k.

• The signal is fed through a single-pole lowpass filter with transfer function

LP z

z

() ,=
-

-
-

1

1 1

a

a

where

a p= - ¥
Ê

Ë
Á

ˆ

¯
˜exp .2

f

f

c

s

• fc is the cutoff frequency specified by the Pre-delay (s) parameter.
• fs is the sampling frequency specified by the Inherit sample rate from input

parameter or the Input sample rate (Hz) parameter.

Decorrelation

The signal is decorrelated by passing through a series of four allpass filters.

The allpass filters are of the form

AP z
z

z

k

k
() ,=

+

+

-

-

b

b1

where β is the coefficient specified by the Diffusion property and k is the delay as
follows:

• For AP1, k = 142.
• For AP2, k = 107.
• For AP3, k = 379.

5-77

5 Blocks in Audio System Toolbox

• For AP4, k = 277.

Tank

The signal is fed into the tank, where it circulates to simulate the decay of a
reverberation tail.

The following description tracks the signal as it progresses through the top of the tank.
The signal progression through the bottom of the tank follows the same pattern, with
different delay specifications.

1 The new signal enters the top of the tank and is added to the circulated signal from
the bottom of the tank.

2 The signal passes through a modulated allpass filter:

5-78

 Reverberator

Modulated AP z
z

z

k

k1
1

() =
- +

-

-

-

b

b

• β is the coefficient specified by the Diffusion parameter.
• k is the variable delay specified by a 1 Hz sinusoid with amplitude = (8/29761) ×

(sample rate). To account for fractional delay resulting from the modulating k,
allpass interpolation is used [2].

3 The signal is delayed again, and then passes through a lowpass filter:

LP z

z
2 1

1

1
() =

-

-
-

j

j

• φ is the coefficient specified by the High frequency damping parameter.
4 The signal is multiplied by a gain specified by the Decay factor parameter. The

signal then passes through an allpass filter:

AP z
z

z

k

k5
1

() .=
+

+

-

-

b

b

• β is the coefficient specified by the Diffusion parameter.
• k is set to 1800 for the top of the tank and 2656 for the bottom of the tank.

5 The signal is delayed again and then circulated to the bottom half of the tank for the
next iteration.

A similar pattern is executed in parallel for the bottom half of the tank. The output of the
tank is calculated as the signed sum of delay lines picked off at various points from the
tank. The summed output is multiplied by 0.6.

Wet/Dry Mix

The wet (processed) signal is then added to the dry (original) signal:

y n x n x nR R R[] [] [] ,= -() +1 3k k

y n x n x nL L L[] [] [] ,= -() +1 3k k

5-79

5 Blocks in Audio System Toolbox

where the Wet/dry mix parameter determines κ.

References

[1] Dattorro, Jon. "Effect Design, Part 1: Reverberator and Other Filters." Journal of the
Audio Engineering Society. Vol. 45, Issue 9, pp. 660–684.

[2] Dattorro, Jon. "Effect Design, Part 2: Delay-Line Modulation and Chorus." Journal of
the Audio Engineering Society. Vol. 45, Issue 10, pp. 764–788.

See Also

See Also

System Objects
reverberator

Introduced in R2016a

5-80

 Weighting Filter

Weighting Filter
Weighted frequency response filter
Library: Audio System Toolbox / Filters

Description

The Weighting Filter block performs frequency-weighted filtering independently across
each input channel.

Ports

Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input — Each column of the input is treated as an independent channel.
• 1-D vector input — The input is treated as a single channel.

Data Types: single | double

Output

Port_1 — Output signal
matrix

The Weighting Filter block outputs a signal with the same data type as the input signal.
The size of the output depends on the size of the input:

• Matrix input — The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input — The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

5-81

5 Blocks in Audio System Toolbox

Data Types: single | double

Parameters

If a parameter is listed as tunable, then you can change its value during simulation.

Weighting method — Type of frequency weighting
A-weighting (default) | C-weighting | K-weighting

See “A-Weighting” on page 5-83, “C-Weighting” on page 5-84, and “K-Weighting”
on page 5-85 for the definition of the weighting curves.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation — Simulate model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is faster than
Interpreted execution.

• Interpreted execution — Simulate model using the MATLAB interpreter. This
option shortens startup time but has a slower simulation speed compared to Code
generation. In this mode, you can debug the source code of the block.

5-82

 Weighting Filter

Mask for attenuation limits — Creates a mask for filter response visualization
No mask (default) | Class 1 | Class 2

The mask attenuation limits are defined in the IEC 61672-1:2002 standard.

• If the mask is green, the design is compliant.
• If the mask is red, the design breaks compliance.

Dependencies
To enable this parameter, set Weighting method to A-weighting or C-weighting.

Visualize filter response — Open plot to visualize magnitude response and
compliance mask
button

A 2048-point FFT is used to calculate the magnitude response.

Model Examples

Definitions

A-Weighting

The A-curve is a wide bandpass filter centered at 2.5 kHz, with approximately 20 dB
attenuation at 100 Hz and 10 dB attenuation at 20 kHz. A-weighted SPL measurements
of noise level are increasingly found in sales literature for domestic appliances. In most
countries, the use of A-weighting is mandated for the protection of workers against noise-
induced deafness. The ISO and ICOA standards mandate A-weighting for all civil aircraft
noise measurements.

The ANSI S1.42.2001 [1] defines this weighting curve. The IEC 61672-1:2002 [2]
standard defines the minimum and maximum attenuation limits for an A-weighting
filter.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio
System Toolbox converts the specified poles and zeros to the digital domain using a
bilinear transform:

5-83

5 Blocks in Audio System Toolbox

C-Weighting

The C-curve is “flat,” but with limited bandwidth: It has –3 dB corners at 31.5 Hz and
8 kHz. C-curves are used in sound level meters for sounds that are louder than those
intended for A-weighting filters.

The ANSI S1.42-2001 [1] defines the C-weighting curve. The IEC 61672-1:2002 [2]
standard defines the minimum and maximum attenuation limits for C-weighting filters.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio
System Toolbox converts the specified poles and zeros to the digital domain using a
bilinear transform:

5-84

 Weighting Filter

K-Weighting

The K-weighting filter is used for loudness normalization in broadcast. It is composed of
two stages of filtering: a first stage shelving filter and a second stage highpass filter.

The ITU-R BS.1770-4 [3] standard defines this curve.

Assume a second-order filter.

The table shows the coefficients for the filters.

First Stage Shelving Coefficients Second Stage Highpass Coefficients

a
1

1 69065929318241= - . a
1

1 99004745483398= - .

a
2

0 73248077421585= . a
2

0 99007225036621= .

b
0

1 53512485958697= . b
0

1 0= .

b
1

2 6916918940638= - . b
1

2 0= - .

b
2

1 19839281085285= . b
2

1 0= .

The coefficients presented by ITU-R BS.1770-4 are defined for 48 kHz. These coefficients
are recomputed for nonstandard sample rates using the algorithm described in [4].

5-85

5 Blocks in Audio System Toolbox

References

[1] Acoustical Society of America. Design Response of Weighting Networks for Acoustical
Measurements. ANSI S1.42-2001. New York, NY: American National Standards
Institute, 2001.

[2] International Electrotechnical Commission. Electroacoustics Sound Level Meters Part
1: Specifications. First Edition. IEC 61672-1. 2002-2005.

[3] International Telecommunication Union. Algorithms to measure audio programme
loudness and true-peak audio level. ITU-R BS.1770-4. 2015.

[4] Mansbridge, Stuart, Saoirse Finn, and Joshua D. Reiss. “Implementation and
Evaluation of Autonomous Multi-track Fader Control.” Paper presented at the
132nd Audio Engineering Society Convention, Budapest, Hungary, 2012.

See Also

See Also

Blocks
Loudness Meter | Octave Filter

System Objects
weightingFilter | octaveFilter | loudnessMeter

5-86

